Cargando…

Amelioration of oxidative damage parameters by carvacrol on methanol-induced liver injury in rats

The methanol metabolite that causes hepatotoxicity is formic acid, generating reactive oxygen radical formation and cell damage. Carvacrol is an antioxidant monoterpenic phenol produced from Thymus vulgaris. This study aimed to investigate the effects of carvacrol on methanol-induced oxidative liver...

Descripción completa

Detalles Bibliográficos
Autores principales: Gursul, Cebrail, Ozcicek, Adalet, Ozkaraca, Mustafa, Mendil, Ali Sefa, Coban, Taha Abdulkadir, Arslan, Aynur, Ozcicek, Fatih, Suleyman, Halis
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Japanese Association for Laboratory Animal Science 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9130043/
https://www.ncbi.nlm.nih.gov/pubmed/34911876
http://dx.doi.org/10.1538/expanim.21-0143
Descripción
Sumario:The methanol metabolite that causes hepatotoxicity is formic acid, generating reactive oxygen radical formation and cell damage. Carvacrol is an antioxidant monoterpenic phenol produced from Thymus vulgaris. This study aimed to investigate the effects of carvacrol on methanol-induced oxidative liver damage in rats. Eighteen rats were divided into three groups. Methotrexate was administered orally for 7 days to methotrexate+methanol (MTM) and methotrexate+methanol+carvacrol (MMC) groups. Methotrexate was given before methanol to cause methanol poisoning. Distilled water was given to the healthy group (HG) as a solvent. At the end of the 7th day, 20% methanol was administered orally at a dose of 3 g/kg to the MTM and MMC groups. Four hours after methanol administration, 50 mg/kg carvacrol was injected intraperitoneally into the MMC group. Animals were sacrificed 8 h after carvacrol injection. Biochemical markers were studied in the excised liver tissue and blood serum samples, and histopathological evaluations were made. Severe hemorrhage, hydropic degeneration, pycnosis, and mononuclear cell infiltration were observed in the liver of the MTM group. Additionally, the levels of malondialdehyde (MDA), total oxidant status (TOS), alanine aminotransferase (ALT), and aspartate aminotransferase (AST) were significantly higher, and total glutathione (tGSH) and total antioxidant status (TAS) were significantly lower in the MTM group compared to HG (P<0.001). Carvacrol prevented the increase in MDA, TOS, ALT and AST levels with methanol and the decrease in tGSH and TAS levels (P<0.001), and alleviated the histopathological damage. Carvacrol may be useful in the treatment of methanol-induced liver damage.