Cargando…
Machine-learning ready data on the thermal power consumption of the Mars Express Spacecraft
We present six datasets containing telemetry data of the Mars Express Spacecraft (MEX), a spacecraft orbiting Mars operated by the European Space Agency. The data consisting of context data and thermal power consumption measurements, capture the status of the spacecraft over three Martian years, sam...
Autores principales: | , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9130140/ https://www.ncbi.nlm.nih.gov/pubmed/35610234 http://dx.doi.org/10.1038/s41597-022-01336-z |
_version_ | 1784712923183054848 |
---|---|
author | Petković, Matej Lucas, Luke Levatić, Jurica Breskvar, Martin Stepišnik, Tomaž Kostovska, Ana Panov, Panče Osojnik, Aljaž Boumghar, Redouane Martínez-Heras, José A. Godfrey, James Donati, Alessandro Džeroski, Sašo Simidjievski, Nikola Ženko, Bernard Kocev, Dragi |
author_facet | Petković, Matej Lucas, Luke Levatić, Jurica Breskvar, Martin Stepišnik, Tomaž Kostovska, Ana Panov, Panče Osojnik, Aljaž Boumghar, Redouane Martínez-Heras, José A. Godfrey, James Donati, Alessandro Džeroski, Sašo Simidjievski, Nikola Ženko, Bernard Kocev, Dragi |
author_sort | Petković, Matej |
collection | PubMed |
description | We present six datasets containing telemetry data of the Mars Express Spacecraft (MEX), a spacecraft orbiting Mars operated by the European Space Agency. The data consisting of context data and thermal power consumption measurements, capture the status of the spacecraft over three Martian years, sampled at six different time resolutions that range from 1 min to 60 min. From a data analysis point-of-view, these data are challenging even for the more sophisticated state-of-the-art artificial intelligence methods. In particular, given the heterogeneity, complexity, and magnitude of the data, they can be employed in a variety of scenarios and analyzed through the prism of different machine learning tasks, such as multi-target regression, learning from data streams, anomaly detection, clustering, etc. Analyzing MEX’s telemetry data is critical for aiding very important decisions regarding the spacecraft’s status and operation, extracting novel knowledge, and monitoring the spacecraft’s health, but the data can also be used to benchmark artificial intelligence methods designed for a variety of tasks. |
format | Online Article Text |
id | pubmed-9130140 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-91301402022-05-26 Machine-learning ready data on the thermal power consumption of the Mars Express Spacecraft Petković, Matej Lucas, Luke Levatić, Jurica Breskvar, Martin Stepišnik, Tomaž Kostovska, Ana Panov, Panče Osojnik, Aljaž Boumghar, Redouane Martínez-Heras, José A. Godfrey, James Donati, Alessandro Džeroski, Sašo Simidjievski, Nikola Ženko, Bernard Kocev, Dragi Sci Data Data Descriptor We present six datasets containing telemetry data of the Mars Express Spacecraft (MEX), a spacecraft orbiting Mars operated by the European Space Agency. The data consisting of context data and thermal power consumption measurements, capture the status of the spacecraft over three Martian years, sampled at six different time resolutions that range from 1 min to 60 min. From a data analysis point-of-view, these data are challenging even for the more sophisticated state-of-the-art artificial intelligence methods. In particular, given the heterogeneity, complexity, and magnitude of the data, they can be employed in a variety of scenarios and analyzed through the prism of different machine learning tasks, such as multi-target regression, learning from data streams, anomaly detection, clustering, etc. Analyzing MEX’s telemetry data is critical for aiding very important decisions regarding the spacecraft’s status and operation, extracting novel knowledge, and monitoring the spacecraft’s health, but the data can also be used to benchmark artificial intelligence methods designed for a variety of tasks. Nature Publishing Group UK 2022-05-24 /pmc/articles/PMC9130140/ /pubmed/35610234 http://dx.doi.org/10.1038/s41597-022-01336-z Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Data Descriptor Petković, Matej Lucas, Luke Levatić, Jurica Breskvar, Martin Stepišnik, Tomaž Kostovska, Ana Panov, Panče Osojnik, Aljaž Boumghar, Redouane Martínez-Heras, José A. Godfrey, James Donati, Alessandro Džeroski, Sašo Simidjievski, Nikola Ženko, Bernard Kocev, Dragi Machine-learning ready data on the thermal power consumption of the Mars Express Spacecraft |
title | Machine-learning ready data on the thermal power consumption of the Mars Express Spacecraft |
title_full | Machine-learning ready data on the thermal power consumption of the Mars Express Spacecraft |
title_fullStr | Machine-learning ready data on the thermal power consumption of the Mars Express Spacecraft |
title_full_unstemmed | Machine-learning ready data on the thermal power consumption of the Mars Express Spacecraft |
title_short | Machine-learning ready data on the thermal power consumption of the Mars Express Spacecraft |
title_sort | machine-learning ready data on the thermal power consumption of the mars express spacecraft |
topic | Data Descriptor |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9130140/ https://www.ncbi.nlm.nih.gov/pubmed/35610234 http://dx.doi.org/10.1038/s41597-022-01336-z |
work_keys_str_mv | AT petkovicmatej machinelearningreadydataonthethermalpowerconsumptionofthemarsexpressspacecraft AT lucasluke machinelearningreadydataonthethermalpowerconsumptionofthemarsexpressspacecraft AT levaticjurica machinelearningreadydataonthethermalpowerconsumptionofthemarsexpressspacecraft AT breskvarmartin machinelearningreadydataonthethermalpowerconsumptionofthemarsexpressspacecraft AT stepisniktomaz machinelearningreadydataonthethermalpowerconsumptionofthemarsexpressspacecraft AT kostovskaana machinelearningreadydataonthethermalpowerconsumptionofthemarsexpressspacecraft AT panovpance machinelearningreadydataonthethermalpowerconsumptionofthemarsexpressspacecraft AT osojnikaljaz machinelearningreadydataonthethermalpowerconsumptionofthemarsexpressspacecraft AT boumgharredouane machinelearningreadydataonthethermalpowerconsumptionofthemarsexpressspacecraft AT martinezherasjosea machinelearningreadydataonthethermalpowerconsumptionofthemarsexpressspacecraft AT godfreyjames machinelearningreadydataonthethermalpowerconsumptionofthemarsexpressspacecraft AT donatialessandro machinelearningreadydataonthethermalpowerconsumptionofthemarsexpressspacecraft AT dzeroskisaso machinelearningreadydataonthethermalpowerconsumptionofthemarsexpressspacecraft AT simidjievskinikola machinelearningreadydataonthethermalpowerconsumptionofthemarsexpressspacecraft AT zenkobernard machinelearningreadydataonthethermalpowerconsumptionofthemarsexpressspacecraft AT kocevdragi machinelearningreadydataonthethermalpowerconsumptionofthemarsexpressspacecraft |