Cargando…

Machine-learning ready data on the thermal power consumption of the Mars Express Spacecraft

We present six datasets containing telemetry data of the Mars Express Spacecraft (MEX), a spacecraft orbiting Mars operated by the European Space Agency. The data consisting of context data and thermal power consumption measurements, capture the status of the spacecraft over three Martian years, sam...

Descripción completa

Detalles Bibliográficos
Autores principales: Petković, Matej, Lucas, Luke, Levatić, Jurica, Breskvar, Martin, Stepišnik, Tomaž, Kostovska, Ana, Panov, Panče, Osojnik, Aljaž, Boumghar, Redouane, Martínez-Heras, José A., Godfrey, James, Donati, Alessandro, Džeroski, Sašo, Simidjievski, Nikola, Ženko, Bernard, Kocev, Dragi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9130140/
https://www.ncbi.nlm.nih.gov/pubmed/35610234
http://dx.doi.org/10.1038/s41597-022-01336-z
_version_ 1784712923183054848
author Petković, Matej
Lucas, Luke
Levatić, Jurica
Breskvar, Martin
Stepišnik, Tomaž
Kostovska, Ana
Panov, Panče
Osojnik, Aljaž
Boumghar, Redouane
Martínez-Heras, José A.
Godfrey, James
Donati, Alessandro
Džeroski, Sašo
Simidjievski, Nikola
Ženko, Bernard
Kocev, Dragi
author_facet Petković, Matej
Lucas, Luke
Levatić, Jurica
Breskvar, Martin
Stepišnik, Tomaž
Kostovska, Ana
Panov, Panče
Osojnik, Aljaž
Boumghar, Redouane
Martínez-Heras, José A.
Godfrey, James
Donati, Alessandro
Džeroski, Sašo
Simidjievski, Nikola
Ženko, Bernard
Kocev, Dragi
author_sort Petković, Matej
collection PubMed
description We present six datasets containing telemetry data of the Mars Express Spacecraft (MEX), a spacecraft orbiting Mars operated by the European Space Agency. The data consisting of context data and thermal power consumption measurements, capture the status of the spacecraft over three Martian years, sampled at six different time resolutions that range from 1 min to 60 min. From a data analysis point-of-view, these data are challenging even for the more sophisticated state-of-the-art artificial intelligence methods. In particular, given the heterogeneity, complexity, and magnitude of the data, they can be employed in a variety of scenarios and analyzed through the prism of different machine learning tasks, such as multi-target regression, learning from data streams, anomaly detection, clustering, etc. Analyzing MEX’s telemetry data is critical for aiding very important decisions regarding the spacecraft’s status and operation, extracting novel knowledge, and monitoring the spacecraft’s health, but the data can also be used to benchmark artificial intelligence methods designed for a variety of tasks.
format Online
Article
Text
id pubmed-9130140
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-91301402022-05-26 Machine-learning ready data on the thermal power consumption of the Mars Express Spacecraft Petković, Matej Lucas, Luke Levatić, Jurica Breskvar, Martin Stepišnik, Tomaž Kostovska, Ana Panov, Panče Osojnik, Aljaž Boumghar, Redouane Martínez-Heras, José A. Godfrey, James Donati, Alessandro Džeroski, Sašo Simidjievski, Nikola Ženko, Bernard Kocev, Dragi Sci Data Data Descriptor We present six datasets containing telemetry data of the Mars Express Spacecraft (MEX), a spacecraft orbiting Mars operated by the European Space Agency. The data consisting of context data and thermal power consumption measurements, capture the status of the spacecraft over three Martian years, sampled at six different time resolutions that range from 1 min to 60 min. From a data analysis point-of-view, these data are challenging even for the more sophisticated state-of-the-art artificial intelligence methods. In particular, given the heterogeneity, complexity, and magnitude of the data, they can be employed in a variety of scenarios and analyzed through the prism of different machine learning tasks, such as multi-target regression, learning from data streams, anomaly detection, clustering, etc. Analyzing MEX’s telemetry data is critical for aiding very important decisions regarding the spacecraft’s status and operation, extracting novel knowledge, and monitoring the spacecraft’s health, but the data can also be used to benchmark artificial intelligence methods designed for a variety of tasks. Nature Publishing Group UK 2022-05-24 /pmc/articles/PMC9130140/ /pubmed/35610234 http://dx.doi.org/10.1038/s41597-022-01336-z Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Data Descriptor
Petković, Matej
Lucas, Luke
Levatić, Jurica
Breskvar, Martin
Stepišnik, Tomaž
Kostovska, Ana
Panov, Panče
Osojnik, Aljaž
Boumghar, Redouane
Martínez-Heras, José A.
Godfrey, James
Donati, Alessandro
Džeroski, Sašo
Simidjievski, Nikola
Ženko, Bernard
Kocev, Dragi
Machine-learning ready data on the thermal power consumption of the Mars Express Spacecraft
title Machine-learning ready data on the thermal power consumption of the Mars Express Spacecraft
title_full Machine-learning ready data on the thermal power consumption of the Mars Express Spacecraft
title_fullStr Machine-learning ready data on the thermal power consumption of the Mars Express Spacecraft
title_full_unstemmed Machine-learning ready data on the thermal power consumption of the Mars Express Spacecraft
title_short Machine-learning ready data on the thermal power consumption of the Mars Express Spacecraft
title_sort machine-learning ready data on the thermal power consumption of the mars express spacecraft
topic Data Descriptor
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9130140/
https://www.ncbi.nlm.nih.gov/pubmed/35610234
http://dx.doi.org/10.1038/s41597-022-01336-z
work_keys_str_mv AT petkovicmatej machinelearningreadydataonthethermalpowerconsumptionofthemarsexpressspacecraft
AT lucasluke machinelearningreadydataonthethermalpowerconsumptionofthemarsexpressspacecraft
AT levaticjurica machinelearningreadydataonthethermalpowerconsumptionofthemarsexpressspacecraft
AT breskvarmartin machinelearningreadydataonthethermalpowerconsumptionofthemarsexpressspacecraft
AT stepisniktomaz machinelearningreadydataonthethermalpowerconsumptionofthemarsexpressspacecraft
AT kostovskaana machinelearningreadydataonthethermalpowerconsumptionofthemarsexpressspacecraft
AT panovpance machinelearningreadydataonthethermalpowerconsumptionofthemarsexpressspacecraft
AT osojnikaljaz machinelearningreadydataonthethermalpowerconsumptionofthemarsexpressspacecraft
AT boumgharredouane machinelearningreadydataonthethermalpowerconsumptionofthemarsexpressspacecraft
AT martinezherasjosea machinelearningreadydataonthethermalpowerconsumptionofthemarsexpressspacecraft
AT godfreyjames machinelearningreadydataonthethermalpowerconsumptionofthemarsexpressspacecraft
AT donatialessandro machinelearningreadydataonthethermalpowerconsumptionofthemarsexpressspacecraft
AT dzeroskisaso machinelearningreadydataonthethermalpowerconsumptionofthemarsexpressspacecraft
AT simidjievskinikola machinelearningreadydataonthethermalpowerconsumptionofthemarsexpressspacecraft
AT zenkobernard machinelearningreadydataonthethermalpowerconsumptionofthemarsexpressspacecraft
AT kocevdragi machinelearningreadydataonthethermalpowerconsumptionofthemarsexpressspacecraft