Cargando…

Brain atrophy pattern in de novo Parkinson’s disease with probable RBD associated with cognitive impairment

Rapid eye movement sleep behavior disorder (RBD) is associated with high likelihood of prodromal Parkinson’s disease (PD) and is common in de novo PD. It is associated with greater cognitive impairment and brain atrophy. However, the relation between structural brain characteristics and cognition re...

Descripción completa

Detalles Bibliográficos
Autores principales: Oltra, Javier, Uribe, Carme, Segura, Barbara, Campabadal, Anna, Inguanzo, Anna, Monté-Rubio, Gemma C., Pardo, Jèssica, Marti, Maria J., Compta, Yaroslau, Valldeoriola, Francesc, Junque, Carme, Iranzo, Alex
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9130201/
https://www.ncbi.nlm.nih.gov/pubmed/35610256
http://dx.doi.org/10.1038/s41531-022-00326-7
Descripción
Sumario:Rapid eye movement sleep behavior disorder (RBD) is associated with high likelihood of prodromal Parkinson’s disease (PD) and is common in de novo PD. It is associated with greater cognitive impairment and brain atrophy. However, the relation between structural brain characteristics and cognition remains poorly understood. We aimed to investigate subcortical and cortical atrophy in de novo PD with probable RBD (PD-pRBD) and to relate it with cognitive impairment. We analyzed volumetry, cortical thickness, and cognitive measures from 79 PD-pRBD patients, 126 PD without probable RBD patients (PD-non pRBD), and 69 controls from the Parkinson’s Progression Markers Initiative (PPMI). Regression models of cognition were tested using magnetic resonance imaging measures as predictors. We found lower left thalamus volume in PD-pRBD compared with PD-non pRBD. Compared with controls, PD-pRBD group showed atrophy in the bilateral putamen, left hippocampus, left amygdala, and thinning in the right superior temporal gyrus. Specific deep gray matter nuclei volumes were associated with impairment in global cognition, phonemic fluency, processing speed, and visuospatial function in PD-pRBD. In conclusion, cognitive impairment and gray matter atrophy are already present in de novo PD-pRBD. Thalamus, hippocampus, and putamen volumes were mainly associated with these cognitive deficits.