Cargando…
Beta2-adrenoreceptor agonist clenbuterol produces transient decreases in alpha-synuclein mRNA but no long-term reduction in protein
β2-adrenoreceptor (β2AR) agonists have been associated with a decreased risk of developing Parkinson’s disease (PD) and are hypothesized to decrease expression of both alpha-synuclein mRNA (Snca) and protein (α-syn). Effects of β2AR agonist clenbuterol on the levels of Snca mRNA and α-syn protein we...
Autores principales: | , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9130326/ https://www.ncbi.nlm.nih.gov/pubmed/35610264 http://dx.doi.org/10.1038/s41531-022-00322-x |
Sumario: | β2-adrenoreceptor (β2AR) agonists have been associated with a decreased risk of developing Parkinson’s disease (PD) and are hypothesized to decrease expression of both alpha-synuclein mRNA (Snca) and protein (α-syn). Effects of β2AR agonist clenbuterol on the levels of Snca mRNA and α-syn protein were evaluated in vivo (rats and mice) and in rat primary cortical neurons by two independent laboratories. A modest decrease in Snca mRNA in the substantia nigra was observed after a single acute dose of clenbuterol in rats, however, this decrease was not maintained after multiple doses. In contrast, α-syn protein levels remained unchanged in both single and multiple dosing paradigms. Furthermore, clenbuterol did not decrease Snca in cultured rat primary cortical neurons, or decrease Snca or α-syn in mice. Additionally, compared to the single-dose paradigm, repeat dosing resulted in substantially lower levels of clenbuterol in plasma and brain tissue in rodents. Based on our observations of a transient decrease in Snca and no effect on α-syn protein in this preclinical study, these data support the conclusion that clenbuterol is not likely a viable disease-modifying strategy for PD. |
---|