Cargando…
DeepLN: A Multi-Task AI Tool to Predict the Imaging Characteristics, Malignancy and Pathological Subtypes in CT-Detected Pulmonary Nodules
OBJECTIVES: Distinction of malignant pulmonary nodules from the benign ones based on computed tomography (CT) images can be time-consuming but significant in routine clinical management. The advent of artificial intelligence (AI) has provided an opportunity to improve the accuracy of cancer risk pre...
Autores principales: | Wang, Chengdi, Shao, Jun, Xu, Xiuyuan, Yi, Le, Wang, Gang, Bai, Congchen, Guo, Jixiang, He, Yanqi, Zhang, Lei, Yi, Zhang, Li, Weimin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9130467/ https://www.ncbi.nlm.nih.gov/pubmed/35646699 http://dx.doi.org/10.3389/fonc.2022.683792 |
Ejemplares similares
-
DeepLN: an artificial intelligence-based automated system for lung cancer screening
por: Guo, Jixiang, et al.
Publicado: (2020) -
Deep Learning to Predict EGFR Mutation and PD-L1 Expression Status in Non-Small-Cell Lung Cancer on Computed Tomography Images
por: Wang, Chengdi, et al.
Publicado: (2021) -
The application of artificial intelligence and radiomics in lung cancer
por: Zhou, Yaojie, et al.
Publicado: (2020) -
Predicting EGFR and PD-L1 Status in NSCLC Patients Using Multitask AI System Based on CT Images
por: Wang, Chengdi, et al.
Publicado: (2022) -
PB-LNet: a model for predicting pathological subtypes of pulmonary nodules on CT images
por: Zhang, Yuchong, et al.
Publicado: (2023)