Cargando…
Drought adaptive microbes as bioinoculants for the horticultural crops()
Drought stress is among the most destructive stresses for agricultural productivity. It interferes with normal metabolic activities of the plants resulting, a negative impact on physiology and morphology of the plants. The management of drought stress requires various adaptive and alleviation strate...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9130543/ https://www.ncbi.nlm.nih.gov/pubmed/35647359 http://dx.doi.org/10.1016/j.heliyon.2022.e09493 |
Sumario: | Drought stress is among the most destructive stresses for agricultural productivity. It interferes with normal metabolic activities of the plants resulting, a negative impact on physiology and morphology of the plants. The management of drought stress requires various adaptive and alleviation strategies in which stress adaptive microbiomes are exquisite bioresources for plant growth and alleviation of drought stress. Diverse drought adaptive microbes belonging to genera Achromobacter, Arthrobacter, Aspergillus, Bacillus, Pseudomonas, Penicillium and Streptomyces have been reported worldwide. These bioresources exhibit a wide range of mechanisms such as helping plant in nutrient acquisition, producing growth regulators, lowering the levels of stress ethylene, increasing the concentration of osmolytes, and preventing oxidative damage under water deficit environmental conditions. Horticulture is one of the potential agricultural sectors to speed up the economy, poverty and generation of employment for livelihood. The applications of drought adaptive plant growth promoting (PGP) microbes as biofertilizers and biopesticides for horticulture is a potential strategy to improve the productivity and protection of horticultural crops from abiotic and biotic stresses for agricultural sustainability. |
---|