Cargando…
Predicting Postoperative Mortality With Deep Neural Networks and Natural Language Processing: Model Development and Validation
BACKGROUND: Machine learning (ML) achieves better predictions of postoperative mortality than previous prediction tools. Free-text descriptions of the preoperative diagnosis and the planned procedure are available preoperatively. Because reading these descriptions helps anesthesiologists evaluate th...
Autores principales: | Chen, Pei-Fu, Chen, Lichin, Lin, Yow-Kuan, Li, Guo-Hung, Lai, Feipei, Lu, Cheng-Wei, Yang, Chi-Yu, Chen, Kuan-Chih, Lin, Tzu-Yu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9131148/ https://www.ncbi.nlm.nih.gov/pubmed/35536634 http://dx.doi.org/10.2196/38241 |
Ejemplares similares
-
Automatic International Classification of Diseases Coding System: Deep Contextualized Language Model With Rule-Based Approaches
por: Chen, Pei-Fu, et al.
Publicado: (2022) -
Automatic ICD-10 Coding and Training System: Deep Neural Network Based on Supervised Learning
por: Chen, Pei-Fu, et al.
Publicado: (2021) -
Training a Deep Contextualized Language Model for International Classification of Diseases, 10th Revision Classification via Federated Learning: Model Development and Validation Study
por: Chen, Pei-Fu, et al.
Publicado: (2022) -
Using Text Content From Coronary Catheterization Reports to Predict 5-Year Mortality Among Patients Undergoing Coronary Angiography: A Deep Learning Approach
por: Li, Yu-Hsuan, et al.
Publicado: (2022) -
Temporal Trends of Severe Hypoglycemia and Subsequent Mortality in Patients with Advanced Diabetic Kidney Diseases Transitioning to Dialysis
por: Hsiao, Ching-Chung, et al.
Publicado: (2019)