Cargando…
Emerging machine learning approaches to phenotyping cellular motility and morphodynamics
Cells respond heterogeneously to molecular and environmental perturbations. Phenotypic heterogeneity, wherein multiple phenotypes coexist in the same conditions, presents challenges when interpreting the observed heterogeneity. Advances in live cell microscopy allow researchers to acquire an unprece...
Autores principales: | Choi, Hee June, Wang, Chuangqi, Pan, Xiang, Jang, Junbong, Cao, Mengzhi, Brazzo, Joseph A, Bae, Yongho, Lee, Kwonmoo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9131244/ https://www.ncbi.nlm.nih.gov/pubmed/33971636 http://dx.doi.org/10.1088/1478-3975/abffbe |
Ejemplares similares
-
A deep learning-based segmentation pipeline for profiling cellular morphodynamics using multiple types of live cell microscopy
por: Jang, Junbong, et al.
Publicado: (2021) -
Protocol for live cell image segmentation to profile cellular morphodynamics using MARS-Net
por: Jang, Junbong, et al.
Publicado: (2022) -
A machine learning pipeline revealing heterogeneous responses to drug perturbations on vascular smooth muscle cell spheroid morphology and formation
por: Vaidyanathan, Kalyanaraman, et al.
Publicado: (2021) -
Deconvolution of subcellular protrusion heterogeneity and the underlying actin regulator dynamics from live cell imaging
por: Wang, Chuangqi, et al.
Publicado: (2018) -
Profiling cellular morphodynamics by spatiotemporal spectrum decomposition
por: Ma, Xiao, et al.
Publicado: (2018)