Cargando…
Incorporating Target-Specific Pharmacophoric Information into Deep Generative Models for Fragment Elaboration
[Image: see text] Despite recent interest in deep generative models for scaffold elaboration, their applicability to fragment-to-lead campaigns has so far been limited. This is primarily due to their inability to account for local protein structure or a user’s design hypothesis. We propose a novel m...
Autores principales: | Hadfield, Thomas E., Imrie, Fergus, Merritt, Andy, Birchall, Kristian, Deane, Charlotte M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2022
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9131447/ https://www.ncbi.nlm.nih.gov/pubmed/35499971 http://dx.doi.org/10.1021/acs.jcim.1c01311 |
Ejemplares similares
-
Deep generative design with 3D pharmacophoric constraints
por: Imrie, Fergus, et al.
Publicado: (2021) -
Generating property-matched decoy molecules using deep learning
por: Imrie, Fergus, et al.
Publicado: (2021) -
Deep Generative Models for 3D Linker Design
por: Imrie, Fergus, et al.
Publicado: (2020) -
Generation of structure-based pharmacophores using energetic analysis – application on fragment docking
por: Loving, Kathryn, et al.
Publicado: (2011) -
Deep Generation of Coq Lemma Names Using Elaborated Terms
por: Nie, Pengyu, et al.
Publicado: (2020)