Cargando…
Pose Classification Using Three-Dimensional Atomic Structure-Based Neural Networks Applied to Ion Channel–Ligand Docking
[Image: see text] The identification of promising lead compounds showing pharmacological activities toward a biological target is essential in early stage drug discovery. With the recent increase in available small-molecule databases, virtual high-throughput screening using physics-based molecular d...
Autores principales: | Shim, Heesung, Kim, Hyojin, Allen, Jonathan E., Wulff, Heike |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2022
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9131459/ https://www.ncbi.nlm.nih.gov/pubmed/35447030 http://dx.doi.org/10.1021/acs.jcim.1c01510 |
Ejemplares similares
-
Are there superagonists for calcium-activated potassium channels?
por: Brown, Brandon M., et al.
Publicado: (2017) -
Ligand Pose and Orientational Sampling in Molecular Docking
por: Coleman, Ryan G., et al.
Publicado: (2013) -
The impact of cross-docked poses on performance of machine learning classifier for protein–ligand binding pose prediction
por: Shen, Chao, et al.
Publicado: (2021) -
The Trials and Tribulations of Structure Assisted Design of K(Ca) Channel Activators
por: Shim, Heesung, et al.
Publicado: (2019) -
AtomNet PoseRanker: Enriching Ligand Pose Quality
for Dynamic Proteins in Virtual High-Throughput Screens
por: Stafford, Kate A., et al.
Publicado: (2022)