Cargando…

Advances in the development of superhydrophobic and icephobic surfaces

Superhydrophobicity and icephobicity are governed by surface chemistry and surface structure. These two features signify a potential advance in surface engineering and have recently garnered significant attention from the research community. This review aims to simulate further research in the devel...

Descripción completa

Detalles Bibliográficos
Autores principales: Elzaabalawy, Assem, Meguid, Shaker A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Netherlands 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9132174/
https://www.ncbi.nlm.nih.gov/pubmed/37520670
http://dx.doi.org/10.1007/s10999-022-09593-x
Descripción
Sumario:Superhydrophobicity and icephobicity are governed by surface chemistry and surface structure. These two features signify a potential advance in surface engineering and have recently garnered significant attention from the research community. This review aims to simulate further research in the development of superhydrophobic and icephobic surfaces in order to achieve their wide-spread adoption in practical applications. The review begins by establishing the fundamentals of the wetting phenomenon and wettability parameters. This is followed by the recent advances in modeling and simulations of the response of superhydrophobic surfaces to static and dynamic droplets contact and impingement, respectively. In view of their versatility and multifunctionality, a special attention is given to the development of these surfaces using nanocomposites. Furthermore, the review considers advances in icephobicity, its comprehensive characterization and its relation to superhydrophobicity. The review also includes the importance of the use of superhydrophobic surface to combat viral and bacterial contamination that exist in fomites.