Cargando…
Leveraging Guided Backpropagation to Select Convolutional Neural Networks for Plant Classification
The development of state-of-the-art convolutional neural networks (CNN) has allowed researchers to perform plant classification tasks previously thought impossible and rely on human judgment. Researchers often develop complex CNN models to achieve better performances, introducing over-parameterizati...
Autores principales: | Mostafa, Sakib, Mondal, Debajyoti, Beck, Michael A., Bidinosti, Christopher P., Henry, Christopher J., Stavness, Ian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9132261/ https://www.ncbi.nlm.nih.gov/pubmed/35647528 http://dx.doi.org/10.3389/frai.2022.871162 |
Ejemplares similares
-
Explainable deep learning in plant phenotyping
por: Mostafa, Sakib, et al.
Publicado: (2023) -
Inside out: transforming images of lab-grown plants for machine learning applications in agriculture
por: Krosney, Alexander E., et al.
Publicado: (2023) -
Backpropagation-Based Decoding for Multimodal Machine Translation
por: Yang, Ziyan, et al.
Publicado: (2022) -
Guiding the retraining of convolutional neural networks against adversarial inputs
por: Durán, Francisco, et al.
Publicado: (2023) -
Editorial: Computer vision in plant phenotyping and agriculture
por: Stavness, Ian, et al.
Publicado: (2023)