Cargando…
Counting Salem Numbers of Arithmetic Hyperbolic 3-Orbifolds
It is known that the lengths of closed geodesics of an arithmetic hyperbolic orbifold are related to Salem numbers. We initiate a quantitative study of this phenomenon. We show that any non-compact arithmetic 3-dimensional orbifold defines [Formula: see text] square-rootable Salem numbers of degree...
Autores principales: | Belolipetsky, Mikhail, Lalín, Matilde, Murillo, Plinio G. P., Thompson, Lola |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9132364/ https://www.ncbi.nlm.nih.gov/pubmed/35646107 http://dx.doi.org/10.1007/s00574-021-00270-9 |
Ejemplares similares
-
Cusp Density and Commensurability of Non-arithmetic Hyperbolic Coxeter Orbifolds
por: Dotti, Edoardo, et al.
Publicado: (2022) -
Pisot and Salem numbers
por: Bertin, M J, et al.
Publicado: (1992) -
The arithmetic of hyperbolic 3-manifolds
por: Maclachlan, Colin, et al.
Publicado: (2003) -
Volumes of arithmetic hyperbolic n-manifolds
por: Belolipetskiy, M
Publicado: (2003) -
Arithmetic geometry of logarithmic pairs and hyperbolicity of moduli spaces: hyperbolicity in montréal
por: Nicole, Marc-Hubert
Publicado: (2020)