Cargando…

E-Commerce Marketing Optimization of Agricultural Products Based on Deep Learning and Data Mining

China Internet plus agriculture was first put forward in 2015 by the Chinese government's work report, laying the foundation for the development of Internet plus agriculture and promoting the rapid growth of e-commerce marketing of agricultural products. The combination of agricultural product...

Descripción completa

Detalles Bibliográficos
Autores principales: Yang, Hui, Zheng, Zhuohang, Sun, Chu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9132631/
https://www.ncbi.nlm.nih.gov/pubmed/35634060
http://dx.doi.org/10.1155/2022/6564014
Descripción
Sumario:China Internet plus agriculture was first put forward in 2015 by the Chinese government's work report, laying the foundation for the development of Internet plus agriculture and promoting the rapid growth of e-commerce marketing of agricultural products. The combination of agricultural product marketing and e-commerce effectively reduces the intermediate links of agricultural product sales. Many e-commerce professional villages have sprung up in some rural areas across the country, and the number of rural e-commerce stores has continued to grow. At this stage, rural e-commerce has become a new way of agricultural trade, and rural e-commerce has formed a unique rural e-store. At present, the e-commerce market share of agricultural products in rural stores is very large, and its advantages are favored by the government, scientific research institutions, and agricultural products processing enterprises. However, with the gradual development of rural e-commerce, it has also encountered many difficulties. Based on this point, this study applies deep learning and data mining to optimize e-commerce marketing. First, with the growth of the online scale of agricultural product transaction data, the creation of traditional shallow model cannot meet the needs of online data processing. Therefore, this study decides to use the deep learning theory for optimization. It has excellent performance in the technical fields of big data processing and image and voice processing and has strong construction ability, which can effectively represent the characteristics of the model. Combined with the characteristics of e-commerce agricultural products processing and consumer practice, this study designs and develops a new customer value evaluation model based on data mining and e-commerce agricultural products value characteristics in the field of e-commerce. By combining deep learning and data mining technology, this study applies it to the field of e-commerce, so as to promote the transformation of marketing optimization.