Cargando…
Mechanisms Involved in Gut Microbiota Regulation of Skeletal Muscle
Skeletal muscle is one of the largest organs in the body and is essential for maintaining quality of life. Loss of skeletal muscle mass and function can lead to a range of adverse consequences. The gut microbiota can interact with skeletal muscle by regulating a variety of processes that affect host...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9132697/ https://www.ncbi.nlm.nih.gov/pubmed/35633886 http://dx.doi.org/10.1155/2022/2151191 |
Sumario: | Skeletal muscle is one of the largest organs in the body and is essential for maintaining quality of life. Loss of skeletal muscle mass and function can lead to a range of adverse consequences. The gut microbiota can interact with skeletal muscle by regulating a variety of processes that affect host physiology, including inflammatory immunity, protein anabolism, energy, lipids, neuromuscular connectivity, oxidative stress, mitochondrial function, and endocrine and insulin resistance. It is proposed that the gut microbiota plays a role in the direction of skeletal muscle mass and work. Even though the notion of the gut microbiota–muscle axis (gut–muscle axis) has been postulated, its causal link is still unknown. The impact of the gut microbiota on skeletal muscle function and quality is described in detail in this review. |
---|