Cargando…
Passenger Surveillance Using Deep Learning in Post-COVID-19 Intelligent Transportation System
Intelligent Transport System should be renovated in many aspects in post-pandemic situation like COVID-19. The passenger-count inside a car will be restricted based on the vehicle capacity and the COVID-19 hot-spot zone. Traffic rules will be impacted to align with a similar contagious outbreak. The...
Autores principales: | Kundu, Srimanta, Maulik, Ujjwal |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Nature Singapore
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9132765/ https://www.ncbi.nlm.nih.gov/pubmed/35836615 http://dx.doi.org/10.1007/s41403-022-00338-y |
Ejemplares similares
-
Passenger flow prediction in bus transportation system using deep learning
por: Nagaraj, Nandini, et al.
Publicado: (2022) -
Public Transport Passenger Attraction Using Policy Interventions for a Post-COVID Scenario
por: Kamar, Sandra, et al.
Publicado: (2022) -
Strategies for COVID-19 Epidemiological Surveillance in India: Overall Policies Till June 2021
por: Ghosh, Nimisha, et al.
Publicado: (2021) -
Estimation of the Number of Passengers in a Bus Using Deep Learning
por: Hsu, Ya-Wen, et al.
Publicado: (2020) -
Modelling public transport passenger flows in the era of intelligent transport systems: COST Action TU1004 (TransITs)
por: Gentile, Guido, et al.
Publicado: (2016)