Cargando…
In situ recording of Mars soundscape
Before the Perseverance rover landing, the acoustic environment of Mars was unknown. Models predicted that: (1) atmospheric turbulence changes at centimetre scales or smaller at the point where molecular viscosity converts kinetic energy into heat(1), (2) the speed of sound varies at the surface wit...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9132769/ https://www.ncbi.nlm.nih.gov/pubmed/35364602 http://dx.doi.org/10.1038/s41586-022-04679-0 |
_version_ | 1784713451189305344 |
---|---|
author | Maurice, S. Chide, B. Murdoch, N. Lorenz, R. D. Mimoun, D. Wiens, R. C. Stott, A. Jacob, X. Bertrand, T. Montmessin, F. Lanza, N. L. Alvarez-Llamas, C. Angel, S. M. Aung, M. Balaram, J. Beyssac, O. Cousin, A. Delory, G. Forni, O. Fouchet, T. Gasnault, O. Grip, H. Hecht, M. Hoffman, J. Laserna, J. Lasue, J. Maki, J. McClean, J. Meslin, P.-Y. Le Mouélic, S. Munguira, A. Newman, C. E. Rodríguez Manfredi, J. A. Moros, J. Ollila, A. Pilleri, P. Schröder, S. de la Torre Juárez, M. Tzanetos, T. Stack, K. M. Farley, K. Williford, K. |
author_facet | Maurice, S. Chide, B. Murdoch, N. Lorenz, R. D. Mimoun, D. Wiens, R. C. Stott, A. Jacob, X. Bertrand, T. Montmessin, F. Lanza, N. L. Alvarez-Llamas, C. Angel, S. M. Aung, M. Balaram, J. Beyssac, O. Cousin, A. Delory, G. Forni, O. Fouchet, T. Gasnault, O. Grip, H. Hecht, M. Hoffman, J. Laserna, J. Lasue, J. Maki, J. McClean, J. Meslin, P.-Y. Le Mouélic, S. Munguira, A. Newman, C. E. Rodríguez Manfredi, J. A. Moros, J. Ollila, A. Pilleri, P. Schröder, S. de la Torre Juárez, M. Tzanetos, T. Stack, K. M. Farley, K. Williford, K. |
author_sort | Maurice, S. |
collection | PubMed |
description | Before the Perseverance rover landing, the acoustic environment of Mars was unknown. Models predicted that: (1) atmospheric turbulence changes at centimetre scales or smaller at the point where molecular viscosity converts kinetic energy into heat(1), (2) the speed of sound varies at the surface with frequency(2,3) and (3) high-frequency waves are strongly attenuated with distance in CO(2) (refs. (2–4)). However, theoretical models were uncertain because of a lack of experimental data at low pressure and the difficulty to characterize turbulence or attenuation in a closed environment. Here, using Perseverance microphone recordings, we present the first characterization of the acoustic environment on Mars and pressure fluctuations in the audible range and beyond, from 20 Hz to 50 kHz. We find that atmospheric sounds extend measurements of pressure variations down to 1,000 times smaller scales than ever observed before, showing a dissipative regime extending over five orders of magnitude in energy. Using point sources of sound (Ingenuity rotorcraft, laser-induced sparks), we highlight two distinct values for the speed of sound that are about 10 m s(−1) apart below and above 240 Hz, a unique characteristic of low-pressure CO(2)-dominated atmosphere. We also provide the acoustic attenuation with distance above 2 kHz, allowing us to explain the large contribution of the CO(2) vibrational relaxation in the audible range. These results establish a ground truth for the modelling of acoustic processes, which is critical for studies in atmospheres such as those of Mars and Venus. |
format | Online Article Text |
id | pubmed-9132769 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-91327692022-05-27 In situ recording of Mars soundscape Maurice, S. Chide, B. Murdoch, N. Lorenz, R. D. Mimoun, D. Wiens, R. C. Stott, A. Jacob, X. Bertrand, T. Montmessin, F. Lanza, N. L. Alvarez-Llamas, C. Angel, S. M. Aung, M. Balaram, J. Beyssac, O. Cousin, A. Delory, G. Forni, O. Fouchet, T. Gasnault, O. Grip, H. Hecht, M. Hoffman, J. Laserna, J. Lasue, J. Maki, J. McClean, J. Meslin, P.-Y. Le Mouélic, S. Munguira, A. Newman, C. E. Rodríguez Manfredi, J. A. Moros, J. Ollila, A. Pilleri, P. Schröder, S. de la Torre Juárez, M. Tzanetos, T. Stack, K. M. Farley, K. Williford, K. Nature Article Before the Perseverance rover landing, the acoustic environment of Mars was unknown. Models predicted that: (1) atmospheric turbulence changes at centimetre scales or smaller at the point where molecular viscosity converts kinetic energy into heat(1), (2) the speed of sound varies at the surface with frequency(2,3) and (3) high-frequency waves are strongly attenuated with distance in CO(2) (refs. (2–4)). However, theoretical models were uncertain because of a lack of experimental data at low pressure and the difficulty to characterize turbulence or attenuation in a closed environment. Here, using Perseverance microphone recordings, we present the first characterization of the acoustic environment on Mars and pressure fluctuations in the audible range and beyond, from 20 Hz to 50 kHz. We find that atmospheric sounds extend measurements of pressure variations down to 1,000 times smaller scales than ever observed before, showing a dissipative regime extending over five orders of magnitude in energy. Using point sources of sound (Ingenuity rotorcraft, laser-induced sparks), we highlight two distinct values for the speed of sound that are about 10 m s(−1) apart below and above 240 Hz, a unique characteristic of low-pressure CO(2)-dominated atmosphere. We also provide the acoustic attenuation with distance above 2 kHz, allowing us to explain the large contribution of the CO(2) vibrational relaxation in the audible range. These results establish a ground truth for the modelling of acoustic processes, which is critical for studies in atmospheres such as those of Mars and Venus. Nature Publishing Group UK 2022-04-01 2022 /pmc/articles/PMC9132769/ /pubmed/35364602 http://dx.doi.org/10.1038/s41586-022-04679-0 Text en © The Author(s) 2022, corrected publication 2022 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Maurice, S. Chide, B. Murdoch, N. Lorenz, R. D. Mimoun, D. Wiens, R. C. Stott, A. Jacob, X. Bertrand, T. Montmessin, F. Lanza, N. L. Alvarez-Llamas, C. Angel, S. M. Aung, M. Balaram, J. Beyssac, O. Cousin, A. Delory, G. Forni, O. Fouchet, T. Gasnault, O. Grip, H. Hecht, M. Hoffman, J. Laserna, J. Lasue, J. Maki, J. McClean, J. Meslin, P.-Y. Le Mouélic, S. Munguira, A. Newman, C. E. Rodríguez Manfredi, J. A. Moros, J. Ollila, A. Pilleri, P. Schröder, S. de la Torre Juárez, M. Tzanetos, T. Stack, K. M. Farley, K. Williford, K. In situ recording of Mars soundscape |
title | In situ recording of Mars soundscape |
title_full | In situ recording of Mars soundscape |
title_fullStr | In situ recording of Mars soundscape |
title_full_unstemmed | In situ recording of Mars soundscape |
title_short | In situ recording of Mars soundscape |
title_sort | in situ recording of mars soundscape |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9132769/ https://www.ncbi.nlm.nih.gov/pubmed/35364602 http://dx.doi.org/10.1038/s41586-022-04679-0 |
work_keys_str_mv | AT maurices insiturecordingofmarssoundscape AT chideb insiturecordingofmarssoundscape AT murdochn insiturecordingofmarssoundscape AT lorenzrd insiturecordingofmarssoundscape AT mimound insiturecordingofmarssoundscape AT wiensrc insiturecordingofmarssoundscape AT stotta insiturecordingofmarssoundscape AT jacobx insiturecordingofmarssoundscape AT bertrandt insiturecordingofmarssoundscape AT montmessinf insiturecordingofmarssoundscape AT lanzanl insiturecordingofmarssoundscape AT alvarezllamasc insiturecordingofmarssoundscape AT angelsm insiturecordingofmarssoundscape AT aungm insiturecordingofmarssoundscape AT balaramj insiturecordingofmarssoundscape AT beyssaco insiturecordingofmarssoundscape AT cousina insiturecordingofmarssoundscape AT deloryg insiturecordingofmarssoundscape AT fornio insiturecordingofmarssoundscape AT fouchett insiturecordingofmarssoundscape AT gasnaulto insiturecordingofmarssoundscape AT griph insiturecordingofmarssoundscape AT hechtm insiturecordingofmarssoundscape AT hoffmanj insiturecordingofmarssoundscape AT lasernaj insiturecordingofmarssoundscape AT lasuej insiturecordingofmarssoundscape AT makij insiturecordingofmarssoundscape AT mccleanj insiturecordingofmarssoundscape AT meslinpy insiturecordingofmarssoundscape AT lemouelics insiturecordingofmarssoundscape AT munguiraa insiturecordingofmarssoundscape AT newmance insiturecordingofmarssoundscape AT rodriguezmanfredija insiturecordingofmarssoundscape AT morosj insiturecordingofmarssoundscape AT ollilaa insiturecordingofmarssoundscape AT pillerip insiturecordingofmarssoundscape AT schroders insiturecordingofmarssoundscape AT delatorrejuarezm insiturecordingofmarssoundscape AT tzanetost insiturecordingofmarssoundscape AT stackkm insiturecordingofmarssoundscape AT farleyk insiturecordingofmarssoundscape AT willifordk insiturecordingofmarssoundscape AT insiturecordingofmarssoundscape |