Cargando…

A causality analysis of risks to perishable product supply chain networks during the COVID-19 outbreak era: An extended DEMATEL method under Pythagorean fuzzy environment

In nowadays world, firms are encountered with many challenges that can jeopardize business continuity. Recently, the coronavirus has brought some problems for supply chain networks. Remarkably, perishable product supply chain networks, such as pharmaceutical, dairy, blood, and food supply chains dea...

Descripción completa

Detalles Bibliográficos
Autores principales: Shafiee, Mohammad, Zare-Mehrjerdi, Yahia, Govindan, Kannan, Dastgoshade, Sohaib
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier Ltd. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9132792/
https://www.ncbi.nlm.nih.gov/pubmed/35637683
http://dx.doi.org/10.1016/j.tre.2022.102759
Descripción
Sumario:In nowadays world, firms are encountered with many challenges that can jeopardize business continuity. Recently, the coronavirus has brought some problems for supply chain networks. Remarkably, perishable product supply chain networks, such as pharmaceutical, dairy, blood, and food supply chains deal with more sophisticated situations. Generally, during pandemic outbreaks, the activities of these industries can play an influential role in society. On the one hand, products of these industries are considered to be daily necessities for living. However, on the other hand, there are many new restrictions to control the coronavirus prevalence, such as closing down all official gatherings and lessening the work hours, which subsequently affect the economic growth and gross domestic product. Therefore, risk assessment can be a useful tool to forestall side-effects of the coronavirus outbreaks on supply chain networks. To that aim, the decision-making trial and evaluation laboratory approach is used to evaluate the risks to perishable product supply chain networks during the coronavirus outbreak era. Feedback from academics was received to identify the most important risks. Then, experts in pharmaceutical, food, and dairy industries were inquired to specify the interrelations among risks. Then, Pythagorean fuzzy sets are employed in order to take the uncertainty of the experts’ judgments into account. Finally, analyses demonstrated that the perishability of products, unhealthy working conditions, supply-side risks, and work-hours are highly influential risks that can easily affect other risk factors. Plus, it turned out that competitive risks are the most susceptive risk in the effect category. In other words, competition among perishable product supply chain networks has become even more fierce during the coronavirus outbreak era. The practical outcomes of this study provide a wide range of insights for managers and decision-makers in order to prevent risks to perishable product supply chain networks during the coronavirus outbreak era.