Cargando…

Children who idiopathically toe-walk have greater plantarflexor effective mechanical advantage compared to typically developing children

PURPOSE: The effective mechanical advantage (EMA) of the plantarflexor muscles is important for gait function and is likely different from typical in equinus gait. However, this has never been quantified for children who idiopathically toe-walk (ITW), despite being routinely altered through clinical...

Descripción completa

Detalles Bibliográficos
Autores principales: Harkness-Armstrong, Carla, Maganaris, Constantinos, Walton, Roger, Wright, David M., Bass, Alfie, Baltzoloulos, Vasilios, O’Brien, Thomas D.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9132809/
https://www.ncbi.nlm.nih.gov/pubmed/35296910
http://dx.doi.org/10.1007/s00421-022-04913-7
Descripción
Sumario:PURPOSE: The effective mechanical advantage (EMA) of the plantarflexor muscles is important for gait function and is likely different from typical in equinus gait. However, this has never been quantified for children who idiopathically toe-walk (ITW), despite being routinely altered through clinical intervention. METHODS: This study quantified the Achilles tendon and ground reaction force (GRF) moment arms, and the plantarflexor EMA of 5 children who ITW and 14 typically developing (TD) children, whilst walking on an instrumented treadmill. RESULTS: There was no difference in the Achilles tendon moment arm length throughout stance between groups (p > 0.05). Children who ITW had a significantly greater GRF moment arm length in early stance (20–24% p = 0.001), but a significantly shorter GRF moment arm length during propulsion (68–74% of stance; p = 0.013) than TD children. Therefore, children who ITW had a greater plantarflexor EMA than TD children when active plantarflexion moments were being generated (60–70% of stance; p = 0.007). Consequently, it was estimated that children who ITW required 30% less plantarflexor muscle force for propulsion. CONCLUSION: Clinical decision making should fully consider that interventions which aim to restore a typical heel-toe gait pattern risk compromising this advantageous leverage and thus, may increase the strength requirements for gait. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s00421-022-04913-7.