Cargando…

Investigating the spatial resolution of EMG and MMG based on a systemic multi-scale model

While electromyography (EMG) and magnetomyography (MMG) are both methods to measure the electrical activity of skeletal muscles, no systematic comparison between both signals exists. Within this work, we propose a novel in silico model for EMG and MMG and test the hypothesis that MMG surpasses EMG i...

Descripción completa

Detalles Bibliográficos
Autores principales: Klotz, Thomas, Gizzi, Leonardo, Röhrle, Oliver
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9132853/
https://www.ncbi.nlm.nih.gov/pubmed/35441905
http://dx.doi.org/10.1007/s10237-022-01572-7
Descripción
Sumario:While electromyography (EMG) and magnetomyography (MMG) are both methods to measure the electrical activity of skeletal muscles, no systematic comparison between both signals exists. Within this work, we propose a novel in silico model for EMG and MMG and test the hypothesis that MMG surpasses EMG in terms of spatial selectivity, i.e. the ability to distinguish spatially shifted sources. The results show that MMG provides a slightly better spatial selectivity than EMG when recorded directly on the muscle surface. However, there is a remarkable difference in spatial selectivity for non-invasive surface measurements. The spatial selectivity of the MMG components aligned with the muscle fibres and normal to the body surface outperforms the spatial selectivity of surface EMG. Particularly, for the MMG’s normal-to-the-surface component the influence of subcutaneous fat is minimal. Further, for the first time, we analyse the contribution of different structural components, i.e. muscle fibres from different motor units and the extracellular space, to the measurable biomagnetic field. Notably, the simulations show that for the normal-to-the-surface MMG component, the contribution from volume currents in the extracellular space and in surrounding inactive tissues, is negligible. Further, our model predicts a surprisingly high contribution of the passive muscle fibres to the observable magnetic field.