Cargando…
Predicting the quality of soybean seeds stored in different environments and packaging using machine learning
The monitoring and evaluating the physical and physiological quality of seeds throughout storage requires technical and financial resources and is subject to sampling and laboratory errors. Therefore, machine learning (ML) techniques could help optimize the processes and obtain accurate results for...
Autores principales: | da Silva André, Geovane, Coradi, Paulo Carteri, Teodoro, Larissa Pereira Ribeiro, Teodoro, Paulo Eduardo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9132987/ https://www.ncbi.nlm.nih.gov/pubmed/35614333 http://dx.doi.org/10.1038/s41598-022-12863-5 |
Ejemplares similares
-
Evaluation of coatings for application in raffia big bags in conditioned storage of soybean cultivars in seed processing units
por: Coradi, Paulo Carteri, et al.
Publicado: (2020) -
Adaptation of technological packaging for conservation of soybean seeds in storage units as an alternative to modified atmospheres
por: Coradi, Paulo Carteri, et al.
Publicado: (2020) -
Sensor-cable-probe and sampler for early detection and prediction of dry matter loss and real-time corn grain quality in transport and storage
por: Nunes, Camila Fontoura, et al.
Publicado: (2023) -
Understanding the combining ability of nutritional, agronomic and industrial traits in soybean F(2) progenies
por: das Chagas, Paulo Henrique Menezes, et al.
Publicado: (2023) -
Influences of drying temperature and storage conditions for preserving the quality of maize postharvest on laboratory and field scales
por: Coradi, Paulo Carteri, et al.
Publicado: (2020)