Cargando…
A novel decentralized federated learning approach to train on globally distributed, poor quality, and protected private medical data
Training on multiple diverse data sources is critical to ensure unbiased and generalizable AI. In healthcare, data privacy laws prohibit data from being moved outside the country of origin, preventing global medical datasets being centralized for AI training. Data-centric, cross-silo federated learn...
Autores principales: | Nguyen, T. V., Dakka, M. A., Diakiw, S. M., VerMilyea, M. D., Perugini, M., Hall, J. M. M., Perugini, D. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9133021/ https://www.ncbi.nlm.nih.gov/pubmed/35614106 http://dx.doi.org/10.1038/s41598-022-12833-x |
Ejemplares similares
-
Automated detection of poor-quality data: case studies in healthcare
por: Dakka, M. A., et al.
Publicado: (2021) -
Efficient automated error detection in medical data using deep-learning and label-clustering
por: Nguyen, T. V., et al.
Publicado: (2023) -
Development of an artificial intelligence-based assessment model for prediction of embryo viability using static images captured by optical light microscopy during IVF
por: VerMilyea, M, et al.
Publicado: (2020) -
Development of an artificial intelligence model for predicting the likelihood of human embryo euploidy based on blastocyst images from multiple imaging systems during IVF
por: Diakiw, S M, et al.
Publicado: (2022) -
Transcription-Independent Heritability of Induced Histone Modifications in the Mouse Preimplantation Embryo
por: VerMilyea, Matthew D., et al.
Publicado: (2009)