Cargando…
An effective detection approach for phishing websites using URL and HTML features
Today's growing phishing websites pose significant threats due to their extremely undetectable risk. They anticipate internet users to mistake them as genuine ones in order to reveal user information and privacy, such as login ids, pass-words, credit card numbers, etc. without notice. This pape...
Autores principales: | Aljofey, Ali, Jiang, Qingshan, Rasool, Abdur, Chen, Hui, Liu, Wenyin, Qu, Qiang, Wang, Yang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9133026/ https://www.ncbi.nlm.nih.gov/pubmed/35614133 http://dx.doi.org/10.1038/s41598-022-10841-5 |
Ejemplares similares
-
A hybrid DNN–LSTM model for detecting phishing URLs
por: Ozcan, Alper, et al.
Publicado: (2021) -
Phishing URLs Detection Using Sequential and Parallel ML Techniques: Comparative Analysis
por: Nagy, Naya, et al.
Publicado: (2023) -
Datasets for phishing websites detection
por: Vrbančič, Grega, et al.
Publicado: (2020) -
Detecting phishing websites using machine learning technique
por: Dutta, Ashit Kumar
Publicado: (2021) -
Modeling Hybrid Feature-Based Phishing Websites Detection Using Machine Learning Techniques
por: Das Guptta, Sumitra, et al.
Publicado: (2022)