Cargando…
An Integrated Model Combining Machine Learning and Deep Learning Algorithms for Classification of Rupture Status of IAs
BACKGROUND: The rupture risk assessment of intracranial aneurysms (IAs) is clinically relevant. How to accurately assess the rupture risk of IAs remains a challenge in clinical decision-making. PURPOSE: We aim to build an integrated model to improve the assessment of the rupture risk of IAs. MATERIA...
Autores principales: | Chen, Rong, Mo, Xiao, Chen, Zhenpeng, Feng, Pujie, Li, Haiyun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9133352/ https://www.ncbi.nlm.nih.gov/pubmed/35645962 http://dx.doi.org/10.3389/fneur.2022.868395 |
Ejemplares similares
-
A Reparametrized CNN Model to Distinguish Alzheimer's Disease Applying Multiple Morphological Metrics and Deep Semantic Features From Structural MRI
por: Chen, Zhenpeng, et al.
Publicado: (2022) -
Evaluation of Three Machine Learning Algorithms for the Automatic Classification of EMG Patterns in Gait Disorders
por: Fricke, Christopher, et al.
Publicado: (2021) -
A Dissipation Function–Based Method for Calculating the Energy Loss of Intracranial Aneurysms
por: Mo, Xiao, et al.
Publicado: (2021) -
Integrate prediction of machine learning for single ACoA rupture risk: a multicenter retrospective analysis
por: Li, Yang, et al.
Publicado: (2023) -
Migraine with aura detection and subtype classification using machine learning algorithms and morphometric magnetic resonance imaging data
por: Mitrović, Katarina, et al.
Publicado: (2023)