Cargando…
Development and Optimization of a Machine-Learning Prediction Model for Acute Desquamation After Breast Radiation Therapy in the Multicenter REQUITE Cohort
PURPOSE: Some patients with breast cancer treated by surgery and radiation therapy experience clinically significant toxicity, which may adversely affect cosmesis and quality of life. There is a paucity of validated clinical prediction models for radiation toxicity. We used machine learning (ML) alg...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9133391/ https://www.ncbi.nlm.nih.gov/pubmed/35647396 http://dx.doi.org/10.1016/j.adro.2021.100890 |
_version_ | 1784713555604406272 |
---|---|
author | Aldraimli, Mahmoud Osman, Sarah Grishchuck, Diana Ingram, Samuel Lyon, Robert Mistry, Anil Oliveira, Jorge Samuel, Robert Shelley, Leila E.A. Soria, Daniele Dwek, Miriam V. Aguado-Barrera, Miguel E. Azria, David Chang-Claude, Jenny Dunning, Alison Giraldo, Alexandra Green, Sheryl Gutiérrez-Enríquez, Sara Herskind, Carsten van Hulle, Hans Lambrecht, Maarten Lozza, Laura Rancati, Tiziana Reyes, Victoria Rosenstein, Barry S. de Ruysscher, Dirk de Santis, Maria C. Seibold, Petra Sperk, Elena Symonds, R. Paul Stobart, Hilary Taboada-Valadares, Begoña Talbot, Christopher J. Vakaet, Vincent J.L. Vega, Ana Veldeman, Liv Veldwijk, Marlon R. Webb, Adam Weltens, Caroline West, Catharine M. Chaussalet, Thierry J. Rattay, Tim |
author_facet | Aldraimli, Mahmoud Osman, Sarah Grishchuck, Diana Ingram, Samuel Lyon, Robert Mistry, Anil Oliveira, Jorge Samuel, Robert Shelley, Leila E.A. Soria, Daniele Dwek, Miriam V. Aguado-Barrera, Miguel E. Azria, David Chang-Claude, Jenny Dunning, Alison Giraldo, Alexandra Green, Sheryl Gutiérrez-Enríquez, Sara Herskind, Carsten van Hulle, Hans Lambrecht, Maarten Lozza, Laura Rancati, Tiziana Reyes, Victoria Rosenstein, Barry S. de Ruysscher, Dirk de Santis, Maria C. Seibold, Petra Sperk, Elena Symonds, R. Paul Stobart, Hilary Taboada-Valadares, Begoña Talbot, Christopher J. Vakaet, Vincent J.L. Vega, Ana Veldeman, Liv Veldwijk, Marlon R. Webb, Adam Weltens, Caroline West, Catharine M. Chaussalet, Thierry J. Rattay, Tim |
author_sort | Aldraimli, Mahmoud |
collection | PubMed |
description | PURPOSE: Some patients with breast cancer treated by surgery and radiation therapy experience clinically significant toxicity, which may adversely affect cosmesis and quality of life. There is a paucity of validated clinical prediction models for radiation toxicity. We used machine learning (ML) algorithms to develop and optimise a clinical prediction model for acute breast desquamation after whole breast external beam radiation therapy in the prospective multicenter REQUITE cohort study. METHODS AND MATERIALS: Using demographic and treatment-related features (m = 122) from patients (n = 2058) at 26 centers, we trained 8 ML algorithms with 10-fold cross-validation in a 50:50 random-split data set with class stratification to predict acute breast desquamation. Based on performance in the validation data set, the logistic model tree, random forest, and naïve Bayes models were taken forward to cost-sensitive learning optimisation. RESULTS: One hundred and ninety-two patients experienced acute desquamation. Resampling and cost-sensitive learning optimisation facilitated an improvement in classification performance. Based on maximising sensitivity (true positives), the “hero” model was the cost-sensitive random forest algorithm with a false-negative: false-positive misclassification penalty of 90:1 containing m = 114 predictive features. Model sensitivity and specificity were 0.77 and 0.66, respectively, with an area under the curve of 0.77 in the validation cohort. CONCLUSIONS: ML algorithms with resampling and cost-sensitive learning generated clinically valid prediction models for acute desquamation using patient demographic and treatment features. Further external validation and inclusion of genomic markers in ML prediction models are worthwhile, to identify patients at increased risk of toxicity who may benefit from supportive intervention or even a change in treatment plan. |
format | Online Article Text |
id | pubmed-9133391 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-91333912022-05-27 Development and Optimization of a Machine-Learning Prediction Model for Acute Desquamation After Breast Radiation Therapy in the Multicenter REQUITE Cohort Aldraimli, Mahmoud Osman, Sarah Grishchuck, Diana Ingram, Samuel Lyon, Robert Mistry, Anil Oliveira, Jorge Samuel, Robert Shelley, Leila E.A. Soria, Daniele Dwek, Miriam V. Aguado-Barrera, Miguel E. Azria, David Chang-Claude, Jenny Dunning, Alison Giraldo, Alexandra Green, Sheryl Gutiérrez-Enríquez, Sara Herskind, Carsten van Hulle, Hans Lambrecht, Maarten Lozza, Laura Rancati, Tiziana Reyes, Victoria Rosenstein, Barry S. de Ruysscher, Dirk de Santis, Maria C. Seibold, Petra Sperk, Elena Symonds, R. Paul Stobart, Hilary Taboada-Valadares, Begoña Talbot, Christopher J. Vakaet, Vincent J.L. Vega, Ana Veldeman, Liv Veldwijk, Marlon R. Webb, Adam Weltens, Caroline West, Catharine M. Chaussalet, Thierry J. Rattay, Tim Adv Radiat Oncol Scientific Article PURPOSE: Some patients with breast cancer treated by surgery and radiation therapy experience clinically significant toxicity, which may adversely affect cosmesis and quality of life. There is a paucity of validated clinical prediction models for radiation toxicity. We used machine learning (ML) algorithms to develop and optimise a clinical prediction model for acute breast desquamation after whole breast external beam radiation therapy in the prospective multicenter REQUITE cohort study. METHODS AND MATERIALS: Using demographic and treatment-related features (m = 122) from patients (n = 2058) at 26 centers, we trained 8 ML algorithms with 10-fold cross-validation in a 50:50 random-split data set with class stratification to predict acute breast desquamation. Based on performance in the validation data set, the logistic model tree, random forest, and naïve Bayes models were taken forward to cost-sensitive learning optimisation. RESULTS: One hundred and ninety-two patients experienced acute desquamation. Resampling and cost-sensitive learning optimisation facilitated an improvement in classification performance. Based on maximising sensitivity (true positives), the “hero” model was the cost-sensitive random forest algorithm with a false-negative: false-positive misclassification penalty of 90:1 containing m = 114 predictive features. Model sensitivity and specificity were 0.77 and 0.66, respectively, with an area under the curve of 0.77 in the validation cohort. CONCLUSIONS: ML algorithms with resampling and cost-sensitive learning generated clinically valid prediction models for acute desquamation using patient demographic and treatment features. Further external validation and inclusion of genomic markers in ML prediction models are worthwhile, to identify patients at increased risk of toxicity who may benefit from supportive intervention or even a change in treatment plan. Elsevier 2022-01-03 /pmc/articles/PMC9133391/ /pubmed/35647396 http://dx.doi.org/10.1016/j.adro.2021.100890 Text en © 2022 The Authors https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Scientific Article Aldraimli, Mahmoud Osman, Sarah Grishchuck, Diana Ingram, Samuel Lyon, Robert Mistry, Anil Oliveira, Jorge Samuel, Robert Shelley, Leila E.A. Soria, Daniele Dwek, Miriam V. Aguado-Barrera, Miguel E. Azria, David Chang-Claude, Jenny Dunning, Alison Giraldo, Alexandra Green, Sheryl Gutiérrez-Enríquez, Sara Herskind, Carsten van Hulle, Hans Lambrecht, Maarten Lozza, Laura Rancati, Tiziana Reyes, Victoria Rosenstein, Barry S. de Ruysscher, Dirk de Santis, Maria C. Seibold, Petra Sperk, Elena Symonds, R. Paul Stobart, Hilary Taboada-Valadares, Begoña Talbot, Christopher J. Vakaet, Vincent J.L. Vega, Ana Veldeman, Liv Veldwijk, Marlon R. Webb, Adam Weltens, Caroline West, Catharine M. Chaussalet, Thierry J. Rattay, Tim Development and Optimization of a Machine-Learning Prediction Model for Acute Desquamation After Breast Radiation Therapy in the Multicenter REQUITE Cohort |
title | Development and Optimization of a Machine-Learning Prediction Model for Acute Desquamation After Breast Radiation Therapy in the Multicenter REQUITE Cohort |
title_full | Development and Optimization of a Machine-Learning Prediction Model for Acute Desquamation After Breast Radiation Therapy in the Multicenter REQUITE Cohort |
title_fullStr | Development and Optimization of a Machine-Learning Prediction Model for Acute Desquamation After Breast Radiation Therapy in the Multicenter REQUITE Cohort |
title_full_unstemmed | Development and Optimization of a Machine-Learning Prediction Model for Acute Desquamation After Breast Radiation Therapy in the Multicenter REQUITE Cohort |
title_short | Development and Optimization of a Machine-Learning Prediction Model for Acute Desquamation After Breast Radiation Therapy in the Multicenter REQUITE Cohort |
title_sort | development and optimization of a machine-learning prediction model for acute desquamation after breast radiation therapy in the multicenter requite cohort |
topic | Scientific Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9133391/ https://www.ncbi.nlm.nih.gov/pubmed/35647396 http://dx.doi.org/10.1016/j.adro.2021.100890 |
work_keys_str_mv | AT aldraimlimahmoud developmentandoptimizationofamachinelearningpredictionmodelforacutedesquamationafterbreastradiationtherapyinthemulticenterrequitecohort AT osmansarah developmentandoptimizationofamachinelearningpredictionmodelforacutedesquamationafterbreastradiationtherapyinthemulticenterrequitecohort AT grishchuckdiana developmentandoptimizationofamachinelearningpredictionmodelforacutedesquamationafterbreastradiationtherapyinthemulticenterrequitecohort AT ingramsamuel developmentandoptimizationofamachinelearningpredictionmodelforacutedesquamationafterbreastradiationtherapyinthemulticenterrequitecohort AT lyonrobert developmentandoptimizationofamachinelearningpredictionmodelforacutedesquamationafterbreastradiationtherapyinthemulticenterrequitecohort AT mistryanil developmentandoptimizationofamachinelearningpredictionmodelforacutedesquamationafterbreastradiationtherapyinthemulticenterrequitecohort AT oliveirajorge developmentandoptimizationofamachinelearningpredictionmodelforacutedesquamationafterbreastradiationtherapyinthemulticenterrequitecohort AT samuelrobert developmentandoptimizationofamachinelearningpredictionmodelforacutedesquamationafterbreastradiationtherapyinthemulticenterrequitecohort AT shelleyleilaea developmentandoptimizationofamachinelearningpredictionmodelforacutedesquamationafterbreastradiationtherapyinthemulticenterrequitecohort AT soriadaniele developmentandoptimizationofamachinelearningpredictionmodelforacutedesquamationafterbreastradiationtherapyinthemulticenterrequitecohort AT dwekmiriamv developmentandoptimizationofamachinelearningpredictionmodelforacutedesquamationafterbreastradiationtherapyinthemulticenterrequitecohort AT aguadobarreramiguele developmentandoptimizationofamachinelearningpredictionmodelforacutedesquamationafterbreastradiationtherapyinthemulticenterrequitecohort AT azriadavid developmentandoptimizationofamachinelearningpredictionmodelforacutedesquamationafterbreastradiationtherapyinthemulticenterrequitecohort AT changclaudejenny developmentandoptimizationofamachinelearningpredictionmodelforacutedesquamationafterbreastradiationtherapyinthemulticenterrequitecohort AT dunningalison developmentandoptimizationofamachinelearningpredictionmodelforacutedesquamationafterbreastradiationtherapyinthemulticenterrequitecohort AT giraldoalexandra developmentandoptimizationofamachinelearningpredictionmodelforacutedesquamationafterbreastradiationtherapyinthemulticenterrequitecohort AT greensheryl developmentandoptimizationofamachinelearningpredictionmodelforacutedesquamationafterbreastradiationtherapyinthemulticenterrequitecohort AT gutierrezenriquezsara developmentandoptimizationofamachinelearningpredictionmodelforacutedesquamationafterbreastradiationtherapyinthemulticenterrequitecohort AT herskindcarsten developmentandoptimizationofamachinelearningpredictionmodelforacutedesquamationafterbreastradiationtherapyinthemulticenterrequitecohort AT vanhullehans developmentandoptimizationofamachinelearningpredictionmodelforacutedesquamationafterbreastradiationtherapyinthemulticenterrequitecohort AT lambrechtmaarten developmentandoptimizationofamachinelearningpredictionmodelforacutedesquamationafterbreastradiationtherapyinthemulticenterrequitecohort AT lozzalaura developmentandoptimizationofamachinelearningpredictionmodelforacutedesquamationafterbreastradiationtherapyinthemulticenterrequitecohort AT rancatitiziana developmentandoptimizationofamachinelearningpredictionmodelforacutedesquamationafterbreastradiationtherapyinthemulticenterrequitecohort AT reyesvictoria developmentandoptimizationofamachinelearningpredictionmodelforacutedesquamationafterbreastradiationtherapyinthemulticenterrequitecohort AT rosensteinbarrys developmentandoptimizationofamachinelearningpredictionmodelforacutedesquamationafterbreastradiationtherapyinthemulticenterrequitecohort AT deruysscherdirk developmentandoptimizationofamachinelearningpredictionmodelforacutedesquamationafterbreastradiationtherapyinthemulticenterrequitecohort AT desantismariac developmentandoptimizationofamachinelearningpredictionmodelforacutedesquamationafterbreastradiationtherapyinthemulticenterrequitecohort AT seiboldpetra developmentandoptimizationofamachinelearningpredictionmodelforacutedesquamationafterbreastradiationtherapyinthemulticenterrequitecohort AT sperkelena developmentandoptimizationofamachinelearningpredictionmodelforacutedesquamationafterbreastradiationtherapyinthemulticenterrequitecohort AT symondsrpaul developmentandoptimizationofamachinelearningpredictionmodelforacutedesquamationafterbreastradiationtherapyinthemulticenterrequitecohort AT stobarthilary developmentandoptimizationofamachinelearningpredictionmodelforacutedesquamationafterbreastradiationtherapyinthemulticenterrequitecohort AT taboadavaladaresbegona developmentandoptimizationofamachinelearningpredictionmodelforacutedesquamationafterbreastradiationtherapyinthemulticenterrequitecohort AT talbotchristopherj developmentandoptimizationofamachinelearningpredictionmodelforacutedesquamationafterbreastradiationtherapyinthemulticenterrequitecohort AT vakaetvincentjl developmentandoptimizationofamachinelearningpredictionmodelforacutedesquamationafterbreastradiationtherapyinthemulticenterrequitecohort AT vegaana developmentandoptimizationofamachinelearningpredictionmodelforacutedesquamationafterbreastradiationtherapyinthemulticenterrequitecohort AT veldemanliv developmentandoptimizationofamachinelearningpredictionmodelforacutedesquamationafterbreastradiationtherapyinthemulticenterrequitecohort AT veldwijkmarlonr developmentandoptimizationofamachinelearningpredictionmodelforacutedesquamationafterbreastradiationtherapyinthemulticenterrequitecohort AT webbadam developmentandoptimizationofamachinelearningpredictionmodelforacutedesquamationafterbreastradiationtherapyinthemulticenterrequitecohort AT weltenscaroline developmentandoptimizationofamachinelearningpredictionmodelforacutedesquamationafterbreastradiationtherapyinthemulticenterrequitecohort AT westcatharinem developmentandoptimizationofamachinelearningpredictionmodelforacutedesquamationafterbreastradiationtherapyinthemulticenterrequitecohort AT chaussaletthierryj developmentandoptimizationofamachinelearningpredictionmodelforacutedesquamationafterbreastradiationtherapyinthemulticenterrequitecohort AT rattaytim developmentandoptimizationofamachinelearningpredictionmodelforacutedesquamationafterbreastradiationtherapyinthemulticenterrequitecohort AT developmentandoptimizationofamachinelearningpredictionmodelforacutedesquamationafterbreastradiationtherapyinthemulticenterrequitecohort |