Cargando…

Development and Optimization of a Machine-Learning Prediction Model for Acute Desquamation After Breast Radiation Therapy in the Multicenter REQUITE Cohort

PURPOSE: Some patients with breast cancer treated by surgery and radiation therapy experience clinically significant toxicity, which may adversely affect cosmesis and quality of life. There is a paucity of validated clinical prediction models for radiation toxicity. We used machine learning (ML) alg...

Descripción completa

Detalles Bibliográficos
Autores principales: Aldraimli, Mahmoud, Osman, Sarah, Grishchuck, Diana, Ingram, Samuel, Lyon, Robert, Mistry, Anil, Oliveira, Jorge, Samuel, Robert, Shelley, Leila E.A., Soria, Daniele, Dwek, Miriam V., Aguado-Barrera, Miguel E., Azria, David, Chang-Claude, Jenny, Dunning, Alison, Giraldo, Alexandra, Green, Sheryl, Gutiérrez-Enríquez, Sara, Herskind, Carsten, van Hulle, Hans, Lambrecht, Maarten, Lozza, Laura, Rancati, Tiziana, Reyes, Victoria, Rosenstein, Barry S., de Ruysscher, Dirk, de Santis, Maria C., Seibold, Petra, Sperk, Elena, Symonds, R. Paul, Stobart, Hilary, Taboada-Valadares, Begoña, Talbot, Christopher J., Vakaet, Vincent J.L., Vega, Ana, Veldeman, Liv, Veldwijk, Marlon R., Webb, Adam, Weltens, Caroline, West, Catharine M., Chaussalet, Thierry J., Rattay, Tim
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9133391/
https://www.ncbi.nlm.nih.gov/pubmed/35647396
http://dx.doi.org/10.1016/j.adro.2021.100890
_version_ 1784713555604406272
author Aldraimli, Mahmoud
Osman, Sarah
Grishchuck, Diana
Ingram, Samuel
Lyon, Robert
Mistry, Anil
Oliveira, Jorge
Samuel, Robert
Shelley, Leila E.A.
Soria, Daniele
Dwek, Miriam V.
Aguado-Barrera, Miguel E.
Azria, David
Chang-Claude, Jenny
Dunning, Alison
Giraldo, Alexandra
Green, Sheryl
Gutiérrez-Enríquez, Sara
Herskind, Carsten
van Hulle, Hans
Lambrecht, Maarten
Lozza, Laura
Rancati, Tiziana
Reyes, Victoria
Rosenstein, Barry S.
de Ruysscher, Dirk
de Santis, Maria C.
Seibold, Petra
Sperk, Elena
Symonds, R. Paul
Stobart, Hilary
Taboada-Valadares, Begoña
Talbot, Christopher J.
Vakaet, Vincent J.L.
Vega, Ana
Veldeman, Liv
Veldwijk, Marlon R.
Webb, Adam
Weltens, Caroline
West, Catharine M.
Chaussalet, Thierry J.
Rattay, Tim
author_facet Aldraimli, Mahmoud
Osman, Sarah
Grishchuck, Diana
Ingram, Samuel
Lyon, Robert
Mistry, Anil
Oliveira, Jorge
Samuel, Robert
Shelley, Leila E.A.
Soria, Daniele
Dwek, Miriam V.
Aguado-Barrera, Miguel E.
Azria, David
Chang-Claude, Jenny
Dunning, Alison
Giraldo, Alexandra
Green, Sheryl
Gutiérrez-Enríquez, Sara
Herskind, Carsten
van Hulle, Hans
Lambrecht, Maarten
Lozza, Laura
Rancati, Tiziana
Reyes, Victoria
Rosenstein, Barry S.
de Ruysscher, Dirk
de Santis, Maria C.
Seibold, Petra
Sperk, Elena
Symonds, R. Paul
Stobart, Hilary
Taboada-Valadares, Begoña
Talbot, Christopher J.
Vakaet, Vincent J.L.
Vega, Ana
Veldeman, Liv
Veldwijk, Marlon R.
Webb, Adam
Weltens, Caroline
West, Catharine M.
Chaussalet, Thierry J.
Rattay, Tim
author_sort Aldraimli, Mahmoud
collection PubMed
description PURPOSE: Some patients with breast cancer treated by surgery and radiation therapy experience clinically significant toxicity, which may adversely affect cosmesis and quality of life. There is a paucity of validated clinical prediction models for radiation toxicity. We used machine learning (ML) algorithms to develop and optimise a clinical prediction model for acute breast desquamation after whole breast external beam radiation therapy in the prospective multicenter REQUITE cohort study. METHODS AND MATERIALS: Using demographic and treatment-related features (m = 122) from patients (n = 2058) at 26 centers, we trained 8 ML algorithms with 10-fold cross-validation in a 50:50 random-split data set with class stratification to predict acute breast desquamation. Based on performance in the validation data set, the logistic model tree, random forest, and naïve Bayes models were taken forward to cost-sensitive learning optimisation. RESULTS: One hundred and ninety-two patients experienced acute desquamation. Resampling and cost-sensitive learning optimisation facilitated an improvement in classification performance. Based on maximising sensitivity (true positives), the “hero” model was the cost-sensitive random forest algorithm with a false-negative: false-positive misclassification penalty of 90:1 containing m = 114 predictive features. Model sensitivity and specificity were 0.77 and 0.66, respectively, with an area under the curve of 0.77 in the validation cohort. CONCLUSIONS: ML algorithms with resampling and cost-sensitive learning generated clinically valid prediction models for acute desquamation using patient demographic and treatment features. Further external validation and inclusion of genomic markers in ML prediction models are worthwhile, to identify patients at increased risk of toxicity who may benefit from supportive intervention or even a change in treatment plan.
format Online
Article
Text
id pubmed-9133391
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-91333912022-05-27 Development and Optimization of a Machine-Learning Prediction Model for Acute Desquamation After Breast Radiation Therapy in the Multicenter REQUITE Cohort Aldraimli, Mahmoud Osman, Sarah Grishchuck, Diana Ingram, Samuel Lyon, Robert Mistry, Anil Oliveira, Jorge Samuel, Robert Shelley, Leila E.A. Soria, Daniele Dwek, Miriam V. Aguado-Barrera, Miguel E. Azria, David Chang-Claude, Jenny Dunning, Alison Giraldo, Alexandra Green, Sheryl Gutiérrez-Enríquez, Sara Herskind, Carsten van Hulle, Hans Lambrecht, Maarten Lozza, Laura Rancati, Tiziana Reyes, Victoria Rosenstein, Barry S. de Ruysscher, Dirk de Santis, Maria C. Seibold, Petra Sperk, Elena Symonds, R. Paul Stobart, Hilary Taboada-Valadares, Begoña Talbot, Christopher J. Vakaet, Vincent J.L. Vega, Ana Veldeman, Liv Veldwijk, Marlon R. Webb, Adam Weltens, Caroline West, Catharine M. Chaussalet, Thierry J. Rattay, Tim Adv Radiat Oncol Scientific Article PURPOSE: Some patients with breast cancer treated by surgery and radiation therapy experience clinically significant toxicity, which may adversely affect cosmesis and quality of life. There is a paucity of validated clinical prediction models for radiation toxicity. We used machine learning (ML) algorithms to develop and optimise a clinical prediction model for acute breast desquamation after whole breast external beam radiation therapy in the prospective multicenter REQUITE cohort study. METHODS AND MATERIALS: Using demographic and treatment-related features (m = 122) from patients (n = 2058) at 26 centers, we trained 8 ML algorithms with 10-fold cross-validation in a 50:50 random-split data set with class stratification to predict acute breast desquamation. Based on performance in the validation data set, the logistic model tree, random forest, and naïve Bayes models were taken forward to cost-sensitive learning optimisation. RESULTS: One hundred and ninety-two patients experienced acute desquamation. Resampling and cost-sensitive learning optimisation facilitated an improvement in classification performance. Based on maximising sensitivity (true positives), the “hero” model was the cost-sensitive random forest algorithm with a false-negative: false-positive misclassification penalty of 90:1 containing m = 114 predictive features. Model sensitivity and specificity were 0.77 and 0.66, respectively, with an area under the curve of 0.77 in the validation cohort. CONCLUSIONS: ML algorithms with resampling and cost-sensitive learning generated clinically valid prediction models for acute desquamation using patient demographic and treatment features. Further external validation and inclusion of genomic markers in ML prediction models are worthwhile, to identify patients at increased risk of toxicity who may benefit from supportive intervention or even a change in treatment plan. Elsevier 2022-01-03 /pmc/articles/PMC9133391/ /pubmed/35647396 http://dx.doi.org/10.1016/j.adro.2021.100890 Text en © 2022 The Authors https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Scientific Article
Aldraimli, Mahmoud
Osman, Sarah
Grishchuck, Diana
Ingram, Samuel
Lyon, Robert
Mistry, Anil
Oliveira, Jorge
Samuel, Robert
Shelley, Leila E.A.
Soria, Daniele
Dwek, Miriam V.
Aguado-Barrera, Miguel E.
Azria, David
Chang-Claude, Jenny
Dunning, Alison
Giraldo, Alexandra
Green, Sheryl
Gutiérrez-Enríquez, Sara
Herskind, Carsten
van Hulle, Hans
Lambrecht, Maarten
Lozza, Laura
Rancati, Tiziana
Reyes, Victoria
Rosenstein, Barry S.
de Ruysscher, Dirk
de Santis, Maria C.
Seibold, Petra
Sperk, Elena
Symonds, R. Paul
Stobart, Hilary
Taboada-Valadares, Begoña
Talbot, Christopher J.
Vakaet, Vincent J.L.
Vega, Ana
Veldeman, Liv
Veldwijk, Marlon R.
Webb, Adam
Weltens, Caroline
West, Catharine M.
Chaussalet, Thierry J.
Rattay, Tim
Development and Optimization of a Machine-Learning Prediction Model for Acute Desquamation After Breast Radiation Therapy in the Multicenter REQUITE Cohort
title Development and Optimization of a Machine-Learning Prediction Model for Acute Desquamation After Breast Radiation Therapy in the Multicenter REQUITE Cohort
title_full Development and Optimization of a Machine-Learning Prediction Model for Acute Desquamation After Breast Radiation Therapy in the Multicenter REQUITE Cohort
title_fullStr Development and Optimization of a Machine-Learning Prediction Model for Acute Desquamation After Breast Radiation Therapy in the Multicenter REQUITE Cohort
title_full_unstemmed Development and Optimization of a Machine-Learning Prediction Model for Acute Desquamation After Breast Radiation Therapy in the Multicenter REQUITE Cohort
title_short Development and Optimization of a Machine-Learning Prediction Model for Acute Desquamation After Breast Radiation Therapy in the Multicenter REQUITE Cohort
title_sort development and optimization of a machine-learning prediction model for acute desquamation after breast radiation therapy in the multicenter requite cohort
topic Scientific Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9133391/
https://www.ncbi.nlm.nih.gov/pubmed/35647396
http://dx.doi.org/10.1016/j.adro.2021.100890
work_keys_str_mv AT aldraimlimahmoud developmentandoptimizationofamachinelearningpredictionmodelforacutedesquamationafterbreastradiationtherapyinthemulticenterrequitecohort
AT osmansarah developmentandoptimizationofamachinelearningpredictionmodelforacutedesquamationafterbreastradiationtherapyinthemulticenterrequitecohort
AT grishchuckdiana developmentandoptimizationofamachinelearningpredictionmodelforacutedesquamationafterbreastradiationtherapyinthemulticenterrequitecohort
AT ingramsamuel developmentandoptimizationofamachinelearningpredictionmodelforacutedesquamationafterbreastradiationtherapyinthemulticenterrequitecohort
AT lyonrobert developmentandoptimizationofamachinelearningpredictionmodelforacutedesquamationafterbreastradiationtherapyinthemulticenterrequitecohort
AT mistryanil developmentandoptimizationofamachinelearningpredictionmodelforacutedesquamationafterbreastradiationtherapyinthemulticenterrequitecohort
AT oliveirajorge developmentandoptimizationofamachinelearningpredictionmodelforacutedesquamationafterbreastradiationtherapyinthemulticenterrequitecohort
AT samuelrobert developmentandoptimizationofamachinelearningpredictionmodelforacutedesquamationafterbreastradiationtherapyinthemulticenterrequitecohort
AT shelleyleilaea developmentandoptimizationofamachinelearningpredictionmodelforacutedesquamationafterbreastradiationtherapyinthemulticenterrequitecohort
AT soriadaniele developmentandoptimizationofamachinelearningpredictionmodelforacutedesquamationafterbreastradiationtherapyinthemulticenterrequitecohort
AT dwekmiriamv developmentandoptimizationofamachinelearningpredictionmodelforacutedesquamationafterbreastradiationtherapyinthemulticenterrequitecohort
AT aguadobarreramiguele developmentandoptimizationofamachinelearningpredictionmodelforacutedesquamationafterbreastradiationtherapyinthemulticenterrequitecohort
AT azriadavid developmentandoptimizationofamachinelearningpredictionmodelforacutedesquamationafterbreastradiationtherapyinthemulticenterrequitecohort
AT changclaudejenny developmentandoptimizationofamachinelearningpredictionmodelforacutedesquamationafterbreastradiationtherapyinthemulticenterrequitecohort
AT dunningalison developmentandoptimizationofamachinelearningpredictionmodelforacutedesquamationafterbreastradiationtherapyinthemulticenterrequitecohort
AT giraldoalexandra developmentandoptimizationofamachinelearningpredictionmodelforacutedesquamationafterbreastradiationtherapyinthemulticenterrequitecohort
AT greensheryl developmentandoptimizationofamachinelearningpredictionmodelforacutedesquamationafterbreastradiationtherapyinthemulticenterrequitecohort
AT gutierrezenriquezsara developmentandoptimizationofamachinelearningpredictionmodelforacutedesquamationafterbreastradiationtherapyinthemulticenterrequitecohort
AT herskindcarsten developmentandoptimizationofamachinelearningpredictionmodelforacutedesquamationafterbreastradiationtherapyinthemulticenterrequitecohort
AT vanhullehans developmentandoptimizationofamachinelearningpredictionmodelforacutedesquamationafterbreastradiationtherapyinthemulticenterrequitecohort
AT lambrechtmaarten developmentandoptimizationofamachinelearningpredictionmodelforacutedesquamationafterbreastradiationtherapyinthemulticenterrequitecohort
AT lozzalaura developmentandoptimizationofamachinelearningpredictionmodelforacutedesquamationafterbreastradiationtherapyinthemulticenterrequitecohort
AT rancatitiziana developmentandoptimizationofamachinelearningpredictionmodelforacutedesquamationafterbreastradiationtherapyinthemulticenterrequitecohort
AT reyesvictoria developmentandoptimizationofamachinelearningpredictionmodelforacutedesquamationafterbreastradiationtherapyinthemulticenterrequitecohort
AT rosensteinbarrys developmentandoptimizationofamachinelearningpredictionmodelforacutedesquamationafterbreastradiationtherapyinthemulticenterrequitecohort
AT deruysscherdirk developmentandoptimizationofamachinelearningpredictionmodelforacutedesquamationafterbreastradiationtherapyinthemulticenterrequitecohort
AT desantismariac developmentandoptimizationofamachinelearningpredictionmodelforacutedesquamationafterbreastradiationtherapyinthemulticenterrequitecohort
AT seiboldpetra developmentandoptimizationofamachinelearningpredictionmodelforacutedesquamationafterbreastradiationtherapyinthemulticenterrequitecohort
AT sperkelena developmentandoptimizationofamachinelearningpredictionmodelforacutedesquamationafterbreastradiationtherapyinthemulticenterrequitecohort
AT symondsrpaul developmentandoptimizationofamachinelearningpredictionmodelforacutedesquamationafterbreastradiationtherapyinthemulticenterrequitecohort
AT stobarthilary developmentandoptimizationofamachinelearningpredictionmodelforacutedesquamationafterbreastradiationtherapyinthemulticenterrequitecohort
AT taboadavaladaresbegona developmentandoptimizationofamachinelearningpredictionmodelforacutedesquamationafterbreastradiationtherapyinthemulticenterrequitecohort
AT talbotchristopherj developmentandoptimizationofamachinelearningpredictionmodelforacutedesquamationafterbreastradiationtherapyinthemulticenterrequitecohort
AT vakaetvincentjl developmentandoptimizationofamachinelearningpredictionmodelforacutedesquamationafterbreastradiationtherapyinthemulticenterrequitecohort
AT vegaana developmentandoptimizationofamachinelearningpredictionmodelforacutedesquamationafterbreastradiationtherapyinthemulticenterrequitecohort
AT veldemanliv developmentandoptimizationofamachinelearningpredictionmodelforacutedesquamationafterbreastradiationtherapyinthemulticenterrequitecohort
AT veldwijkmarlonr developmentandoptimizationofamachinelearningpredictionmodelforacutedesquamationafterbreastradiationtherapyinthemulticenterrequitecohort
AT webbadam developmentandoptimizationofamachinelearningpredictionmodelforacutedesquamationafterbreastradiationtherapyinthemulticenterrequitecohort
AT weltenscaroline developmentandoptimizationofamachinelearningpredictionmodelforacutedesquamationafterbreastradiationtherapyinthemulticenterrequitecohort
AT westcatharinem developmentandoptimizationofamachinelearningpredictionmodelforacutedesquamationafterbreastradiationtherapyinthemulticenterrequitecohort
AT chaussaletthierryj developmentandoptimizationofamachinelearningpredictionmodelforacutedesquamationafterbreastradiationtherapyinthemulticenterrequitecohort
AT rattaytim developmentandoptimizationofamachinelearningpredictionmodelforacutedesquamationafterbreastradiationtherapyinthemulticenterrequitecohort
AT developmentandoptimizationofamachinelearningpredictionmodelforacutedesquamationafterbreastradiationtherapyinthemulticenterrequitecohort