Cargando…
Radiomics and Machine Learning for Detecting Scar Tissue on CT Delayed Enhancement Imaging
BACKGROUND: Delayed enhancement CT (CT-DE) has been evaluated as a tool for the detection of myocardial scar and compares well to the gold standard of MRI with late gadolinium enhancement (MRI-LGE). Prior work has established that high performance can be achieved with manual reading; however, few st...
Autores principales: | O'Brien, Hugh, Williams, Michelle C., Rajani, Ronak, Niederer, Steven |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9133416/ https://www.ncbi.nlm.nih.gov/pubmed/35647044 http://dx.doi.org/10.3389/fcvm.2022.847825 |
Ejemplares similares
-
Automated Left Ventricle Ischemic Scar Detection in CT Using Deep Neural Networks
por: O'Brien, Hugh, et al.
Publicado: (2021) -
Development and Validation of a Machine Learning-Based Radiomics Model on Cardiac Computed Tomography of Epicardial Adipose Tissue in Predicting Characteristics and Recurrence of Atrial Fibrillation
por: Yang, Min, et al.
Publicado: (2022) -
Editorial: Advances in the imaging and treatment of valvular heart disease: “rising to the challenge”
por: Banovic, Marko, et al.
Publicado: (2023) -
Pericoronary radiomics texture features associated with hypercholesterolemia on a photon-counting-CT
por: Kahmann, Jannik, et al.
Publicado: (2023) -
Machine Learning for Assessment of Coronary Artery Disease in Cardiac CT: A Survey
por: Hampe, Nils, et al.
Publicado: (2019)