Cargando…
Predicting the Prognosis of Patients in the Coronary Care Unit: A Novel Multi-Category Machine Learning Model Using XGBoost
BACKGROUND: Early prediction and classification of prognosis is essential for patients in the coronary care unit (CCU). We applied a machine learning (ML) model using the eXtreme Gradient Boosting (XGBoost) algorithm to prognosticate CCU patients and compared XGBoost with traditional classification...
Autores principales: | Wang, Xingchen, Zhu, Tianqi, Xia, Minghong, Liu, Yu, Wang, Yao, Wang, Xizhi, Zhuang, Lenan, Zhong, Danfeng, Zhu, Jun, He, Hong, Weng, Shaoxiang, Zhu, Junhui, Lai, Dongwu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9133425/ https://www.ncbi.nlm.nih.gov/pubmed/35647052 http://dx.doi.org/10.3389/fcvm.2022.764629 |
Ejemplares similares
-
Exploring the Causal Effects of Circulating ST2 and Galectin-3 on Heart Failure Risk: A Mendelian Randomization Study
por: Wang, Xizhi, et al.
Publicado: (2022) -
Appraising the Causal Association between Systemic Iron Status and Heart Failure Risk: A Mendelian Randomisation Study
por: Wang, Xingchen, et al.
Publicado: (2022) -
Identification of Underlying Hub Genes Associated with Hypertrophic Cardiomyopathy by Integrated Bioinformatics Analysis
por: Ma, Zetao, et al.
Publicado: (2021) -
The predictive value of pressure recording analytical method for the duration of mechanical ventilation in children undergoing cardiac surgery with an XGBoost-based machine learning model
por: Li, Mingwei, et al.
Publicado: (2022) -
Predicting ICU Mortality in Rheumatic Heart Disease: Comparison of XGBoost and Logistic Regression
por: Xu, Yixian, et al.
Publicado: (2022)