Cargando…
Predictive Efficacy of a Radiomics Random Forest Model for Identifying Pathological Subtypes of Lung Adenocarcinoma Presenting as Ground-Glass Nodules
PURPOSE: To establish and verify the ability of a radiomics prediction model to distinguish invasive adenocarcinoma (IAC) and minimal invasive adenocarcinoma (MIA) presenting as ground-glass nodules (GGNs). METHODS: We retrospectively analyzed 118 lung GGN images and clinical data from 106 patients...
Autores principales: | Zhao, Fen-hua, Fan, Hong-jie, Shan, Kang-fei, Zhou, Long, Pang, Zhen-zhu, Fu, Chun-long, Yang, Ze-bin, Wu, Mei-kang, Sun, Ji-hong, Yang, Xiao-ming, Huang, Zhao-hui |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9133455/ https://www.ncbi.nlm.nih.gov/pubmed/35646675 http://dx.doi.org/10.3389/fonc.2022.872503 |
Ejemplares similares
-
Discrimination of ground‐glass nodular lung adenocarcinoma pathological subtypes via transfer learning: A multicenter study
por: Fu, Chun‐Long, et al.
Publicado: (2023) -
Radiomics for lung adenocarcinoma manifesting as pure ground-glass nodules: invasive prediction
por: Sun, Yingli, et al.
Publicado: (2020) -
Use of a Radiomics Model to Predict Tumor Invasiveness of Pulmonary Adenocarcinomas Appearing as Pulmonary Ground-Glass Nodules
por: Xue, Xing, et al.
Publicado: (2018) -
A computerized tomography-based radiomic model for assessing the invasiveness of lung adenocarcinoma manifesting as ground-glass opacity nodules
por: Zhu, Minghui, et al.
Publicado: (2022) -
Invasive Prediction of Ground Glass Nodule Based on Clinical Characteristics and Radiomics Feature
por: Zheng, Hui, et al.
Publicado: (2022)