Cargando…
Self-supervised Natural Image Reconstruction and Large-scale Semantic Classification from Brain Activity
Reconstructing natural images and decoding their semantic category from fMRI brain recordings is challenging. Acquiring sufficient pairs of images and their corresponding fMRI responses, which span the huge space of natural images, is prohibitive. We present a novel self-supervised approach that goe...
Autores principales: | Gaziv, Guy, Beliy, Roman, Granot, Niv, Hoogi, Assaf, Strappini, Francesca, Golan, Tal, Irani, Michal |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Academic Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9133799/ https://www.ncbi.nlm.nih.gov/pubmed/35342004 http://dx.doi.org/10.1016/j.neuroimage.2022.119121 |
Ejemplares similares
-
Semantic and Generalized Entropy Loss Functions for Semi-Supervised Deep Learning
por: Gajowniczek, Krzysztof, et al.
Publicado: (2020) -
Revisiting Consistency for Semi-Supervised Semantic Segmentation †
por: Grubišić, Ivan, et al.
Publicado: (2023) -
Semi-Supervised Learning to Identify UMLS Semantic Relations
por: Luo, Yuan, et al.
Publicado: (2014) -
Lidar–Camera Semi-Supervised Learning for Semantic Segmentation
por: Caltagirone, Luca, et al.
Publicado: (2021) -
Large-Scale ALS Data Semantic Classification Integrating Location-Context-Semantics Cues by Higher-Order CRF
por: Han, Wei, et al.
Publicado: (2020)