Cargando…

CXCL16/ERK1/2 pathway regulates human podocytes growth, migration, apoptosis and epithelial mesenchymal transition

Primary nephrotic syndrome (PNS) is the commonest glomerular disease affecting children. Previous studies have confirmed that CXC motif chemokine ligand 16 (CXCL16) is involved in the pathogenesis of PNS. However, the exact mechanisms underlying the pathogenesis of PNS remain to be elucidated. Thus,...

Descripción completa

Detalles Bibliográficos
Autores principales: Chen, Yuan, Wang, Zhiyi, Li, Qian, Tian, Minle, Zhu, Yanji, Yu, Lichun, Wang, Jing, Sun, Shuzhen
Formato: Online Artículo Texto
Lenguaje:English
Publicado: D.A. Spandidos 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9133949/
https://www.ncbi.nlm.nih.gov/pubmed/35514316
http://dx.doi.org/10.3892/mmr.2022.12728
Descripción
Sumario:Primary nephrotic syndrome (PNS) is the commonest glomerular disease affecting children. Previous studies have confirmed that CXC motif chemokine ligand 16 (CXCL16) is involved in the pathogenesis of PNS. However, the exact mechanisms underlying the pathogenesis of PNS remain to be elucidated. Thus, the present study aimed to elucidate the role of CXCL16 in PNS. It was found that the expression of CXCL16 and extracellular signal-regulated kinases 1 and 2 (ERK1/2) were significantly increased in clinical PNS renal tissues using reverse transcription-quantitative PCR, western blot analysis and immunohistochemistry. Lentivirus overexpression or short hairpin RNA vector was used to induce the overexpression or knockdown of CXCL16 in podocytes, respectively. Overexpression of CXCL16 in podocytes could decrease the cell proliferation and increase the migration and apoptosis, whereas CXCL16 knockdown increased cell proliferation and decreased cell migration and apoptosis. Results of the present study further demonstrated that ERK2 protein expression was regulated by CXCL16. The knockdown of ERK2 expression reversed the effects of CXCL16 on the proliferation, apoptosis, migration and epithelial mesenchymal transition (EMT) of podocytes. Collectively, the findings of the present study highlighted that the CXCL16/ERK1/2 pathway regulates the growth, migration, apoptosis and EMT of human podocytes.