Cargando…
Detection and Localization of Tip-Burn on Large Lettuce Canopies
Recent years have seen an increased effort in the detection of plant stresses and diseases using non-invasive sensors and deep learning methods. Nonetheless, no studies have been made on dense plant canopies, due to the difficulty in automatically zooming into each plant, especially in outdoor condi...
Autores principales: | Franchetti, Benjamin, Pirri, Fiora |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9133957/ https://www.ncbi.nlm.nih.gov/pubmed/35646012 http://dx.doi.org/10.3389/fpls.2022.874035 |
Ejemplares similares
-
LettuceTrack: Detection and tracking of lettuce for robotic precision spray in agriculture
por: Hu, Nan, et al.
Publicado: (2022) -
LettuceMOT: A dataset of lettuce detection and tracking with re-identification of re-occurred plants for agricultural robots
por: Hu, Nan, et al.
Publicado: (2022) -
“Canopy fingerprints” for characterizing three-dimensional point cloud data of soybean canopies
por: Young, Therin J., et al.
Publicado: (2023) -
The Stress Detection and Segmentation Strategy in Tea Plant at Canopy Level
por: Zhao, Xiaohu, et al.
Publicado: (2022) -
Detection of Tip-Burn Stress on Lettuce Grown in an Indoor Environment Using Deep Learning Algorithms
por: Hamidon, Munirah Hayati, et al.
Publicado: (2022)