Cargando…
Electronic Medical Record–Based Machine Learning Approach to Predict the Risk of 30-Day Adverse Cardiac Events After Invasive Coronary Treatment: Machine Learning Model Development and Validation
BACKGROUND: Although there is a growing interest in prediction models based on electronic medical records (EMRs) to identify patients at risk of adverse cardiac events following invasive coronary treatment, robust models fully utilizing EMR data are limited. OBJECTIVE: We aimed to develop and valida...
Autores principales: | Kwon, Osung, Na, Wonjun, Kang, Heejun, Jun, Tae Joon, Kweon, Jihoon, Park, Gyung-Min, Cho, YongHyun, Hur, Cinyoung, Chae, Jungwoo, Kang, Do-Yoon, Lee, Pil Hyung, Ahn, Jung-Min, Park, Duk-Woo, Kang, Soo-Jin, Lee, Seung-Whan, Lee, Cheol Whan, Park, Seong-Wook, Park, Seung-Jung, Yang, Dong Hyun, Kim, Young-Hak |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9133980/ https://www.ncbi.nlm.nih.gov/pubmed/35544292 http://dx.doi.org/10.2196/26801 |
Ejemplares similares
-
Deep learning segmentation of major vessels in X-ray coronary angiography
por: Yang, Su, et al.
Publicado: (2019) -
Angiography‐Based Machine Learning for Predicting Fractional Flow Reserve in Intermediate Coronary Artery Lesions
por: Cho, Hyungjoo, et al.
Publicado: (2019) -
Machine learning assessment of myocardial ischemia using angiography: Development and retrospective validation
por: Hae, Hyeonyong, et al.
Publicado: (2018) -
Early experience and favorable clinical outcomes of everolimus-eluting bioresorbable scaffolds for coronary artery disease in Korea
por: Kwon, Osung, et al.
Publicado: (2018) -
Machine Learning: a New Opportunity for Risk Prediction
por: Kwon, Osung, et al.
Publicado: (2019)