Cargando…
Utility of Diagnostic Ultrasound in the Assessment of Patellar Instability
BACKGROUND: The use of imaging to diagnose patellofemoral instability is often limited by the inability to dynamically load the joint during assessment. Therefore, the diagnosis is typically based on physical examination using the glide test to assess and quantify lateral patellar translation. Howev...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
SAGE Publications
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9134436/ https://www.ncbi.nlm.nih.gov/pubmed/35647210 http://dx.doi.org/10.1177/23259671221098748 |
_version_ | 1784713777405493248 |
---|---|
author | Bhimani, Rohan Ashkani-Esfahani, Soheil Mirochnik, Karina Lubberts, Bart DiGiovanni, Christopher W. Tanaka, Miho J. |
author_facet | Bhimani, Rohan Ashkani-Esfahani, Soheil Mirochnik, Karina Lubberts, Bart DiGiovanni, Christopher W. Tanaka, Miho J. |
author_sort | Bhimani, Rohan |
collection | PubMed |
description | BACKGROUND: The use of imaging to diagnose patellofemoral instability is often limited by the inability to dynamically load the joint during assessment. Therefore, the diagnosis is typically based on physical examination using the glide test to assess and quantify lateral patellar translation. However, precise quantification with this technique remains difficult. PURPOSE: To quantify patellar position using ultrasound imaging under dynamic loading conditions to distinguish between knees with and without medial patellofemoral complex (MPFC) injury. STUDY DESIGN: Controlled laboratory study. METHODS: In 10 cadaveric knees, the medial patellofemoral distance was measured to quantify patellar position from 0° to 40° of knee flexion at 10° increments. Knees were evaluated at each flexion angle under unloaded conditions and with 20 N of laterally directed force on the patella to mimic the glide test. Patellar position measurements were made on ultrasound images obtained before and after MPFC transection and compared for significant differences. To determine the ability of medial patellofemoral measurements to differentiate between MPFC-intact and MPFC-deficient states, area under the receiver operating characteristic (ROC) curve analysis and the Delong test were used. The optimal cutoff value to distinguish between the deficient and intact states was determined using the Youden J statistic. RESULTS: A significant increase in medial patellofemoral distance was observed in the MPFC-deficient state as compared with the intact state at all flexion angles (P = .005 to P < .001). When compared with the intact state, MPFC deficiency increased medial patellofemoral distance by 32.8% (6 mm) at 20° of knee flexion under 20-N load. Based on ROC analysis and the J statistic, the optimal threshold for identifying MPFC injury was 19.2 mm of medial patellofemoral distance at 20° of flexion under dynamic loading conditions (area under the ROC curve = 0.93, sensitivity = 77.8%, specificity = 100%, accuracy = 88.9%). CONCLUSION: Using dynamic ultrasound assessment, we found that medial patellofemoral distance significantly increases with disruption of the MPFC. CLINICAL RELEVANCE: Dynamic ultrasound measurements can be used to accurately detect the presence of complete MPFC injury. |
format | Online Article Text |
id | pubmed-9134436 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | SAGE Publications |
record_format | MEDLINE/PubMed |
spelling | pubmed-91344362022-05-27 Utility of Diagnostic Ultrasound in the Assessment of Patellar Instability Bhimani, Rohan Ashkani-Esfahani, Soheil Mirochnik, Karina Lubberts, Bart DiGiovanni, Christopher W. Tanaka, Miho J. Orthop J Sports Med Article BACKGROUND: The use of imaging to diagnose patellofemoral instability is often limited by the inability to dynamically load the joint during assessment. Therefore, the diagnosis is typically based on physical examination using the glide test to assess and quantify lateral patellar translation. However, precise quantification with this technique remains difficult. PURPOSE: To quantify patellar position using ultrasound imaging under dynamic loading conditions to distinguish between knees with and without medial patellofemoral complex (MPFC) injury. STUDY DESIGN: Controlled laboratory study. METHODS: In 10 cadaveric knees, the medial patellofemoral distance was measured to quantify patellar position from 0° to 40° of knee flexion at 10° increments. Knees were evaluated at each flexion angle under unloaded conditions and with 20 N of laterally directed force on the patella to mimic the glide test. Patellar position measurements were made on ultrasound images obtained before and after MPFC transection and compared for significant differences. To determine the ability of medial patellofemoral measurements to differentiate between MPFC-intact and MPFC-deficient states, area under the receiver operating characteristic (ROC) curve analysis and the Delong test were used. The optimal cutoff value to distinguish between the deficient and intact states was determined using the Youden J statistic. RESULTS: A significant increase in medial patellofemoral distance was observed in the MPFC-deficient state as compared with the intact state at all flexion angles (P = .005 to P < .001). When compared with the intact state, MPFC deficiency increased medial patellofemoral distance by 32.8% (6 mm) at 20° of knee flexion under 20-N load. Based on ROC analysis and the J statistic, the optimal threshold for identifying MPFC injury was 19.2 mm of medial patellofemoral distance at 20° of flexion under dynamic loading conditions (area under the ROC curve = 0.93, sensitivity = 77.8%, specificity = 100%, accuracy = 88.9%). CONCLUSION: Using dynamic ultrasound assessment, we found that medial patellofemoral distance significantly increases with disruption of the MPFC. CLINICAL RELEVANCE: Dynamic ultrasound measurements can be used to accurately detect the presence of complete MPFC injury. SAGE Publications 2022-05-23 /pmc/articles/PMC9134436/ /pubmed/35647210 http://dx.doi.org/10.1177/23259671221098748 Text en © The Author(s) 2022 https://creativecommons.org/licenses/by-nc-nd/4.0/This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 License (https://creativecommons.org/licenses/by-nc-nd/4.0/) which permits non-commercial use, reproduction and distribution of the work as published without adaptation or alteration, without further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage). |
spellingShingle | Article Bhimani, Rohan Ashkani-Esfahani, Soheil Mirochnik, Karina Lubberts, Bart DiGiovanni, Christopher W. Tanaka, Miho J. Utility of Diagnostic Ultrasound in the Assessment of Patellar Instability |
title | Utility of Diagnostic Ultrasound in the Assessment of Patellar
Instability |
title_full | Utility of Diagnostic Ultrasound in the Assessment of Patellar
Instability |
title_fullStr | Utility of Diagnostic Ultrasound in the Assessment of Patellar
Instability |
title_full_unstemmed | Utility of Diagnostic Ultrasound in the Assessment of Patellar
Instability |
title_short | Utility of Diagnostic Ultrasound in the Assessment of Patellar
Instability |
title_sort | utility of diagnostic ultrasound in the assessment of patellar
instability |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9134436/ https://www.ncbi.nlm.nih.gov/pubmed/35647210 http://dx.doi.org/10.1177/23259671221098748 |
work_keys_str_mv | AT bhimanirohan utilityofdiagnosticultrasoundintheassessmentofpatellarinstability AT ashkaniesfahanisoheil utilityofdiagnosticultrasoundintheassessmentofpatellarinstability AT mirochnikkarina utilityofdiagnosticultrasoundintheassessmentofpatellarinstability AT lubbertsbart utilityofdiagnosticultrasoundintheassessmentofpatellarinstability AT digiovannichristopherw utilityofdiagnosticultrasoundintheassessmentofpatellarinstability AT tanakamihoj utilityofdiagnosticultrasoundintheassessmentofpatellarinstability |