Cargando…

Wetting Behavior of a Three-Phase System in Contact with a Surface

[Image: see text] We extend the Cahn-Landau-de Gennes mean field theory of wetting in binary mixtures to understand the wetting thermodynamics of a three phase system (e.g., polymer dispersed liquid crystals or polymer-colloid mixtures) that is in contact with an external surface, which prefers one...

Descripción completa

Detalles Bibliográficos
Autores principales: Mukherjee, Biswaroop, Chakrabarti, Buddhapriya
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2022
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9134494/
https://www.ncbi.nlm.nih.gov/pubmed/35634035
http://dx.doi.org/10.1021/acs.macromol.1c02559
Descripción
Sumario:[Image: see text] We extend the Cahn-Landau-de Gennes mean field theory of wetting in binary mixtures to understand the wetting thermodynamics of a three phase system (e.g., polymer dispersed liquid crystals or polymer-colloid mixtures) that is in contact with an external surface, which prefers one of the phases. Using a model free-energy, which has three minima in its landscape, we show that as the central minimum becomes more stable compared to the remaining ones, the bulk phase diagram encounters a triple point and then bifurcates and we observe a novel non-monotonic dependence of the surface tension as a function of the stability of the central minimum. We show that this non-monotonicity in surface tension is associated with a complete to partial wetting transition. We obtain the complete wetting phase behavior as a function of phase stability and the surface interaction parameters when the system is close to the bulk triple point. The model free-energy that we use is qualitatively similar to that of a renormalized free energy, which arises in the context of polymer-liquid crystal mixtures. Finally, we study the thermodynamics of wetting for an explicit polymer-liquid crystal mixture and show that its thermodynamics is similar to that of our model free-energy.