Cargando…

Structural Diversity in Multicomponent Nanocrystal Superlattices Comprising Lead Halide Perovskite Nanocubes

[Image: see text] Nanocrystal (NC) self-assembly is a versatile platform for materials engineering at the mesoscale. The NC shape anisotropy leads to structures not observed with spherical NCs. This work presents a broad structural diversity in multicomponent, long-range ordered superlattices (SLs)...

Descripción completa

Detalles Bibliográficos
Autores principales: Cherniukh, Ihor, Sekh, Taras V., Rainò, Gabriele, Ashton, Olivia J., Burian, Max, Travesset, Alex, Athanasiou, Modestos, Manoli, Andreas, John, Rohit Abraham, Svyrydenko, Mariia, Morad, Viktoriia, Shynkarenko, Yevhen, Montanarella, Federico, Naumenko, Denys, Amenitsch, Heinz, Itskos, Grigorios, Mahrt, Rainer F., Stöferle, Thilo, Erni, Rolf, Kovalenko, Maksym V., Bodnarchuk, Maryna I.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2022
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9134504/
https://www.ncbi.nlm.nih.gov/pubmed/35385663
http://dx.doi.org/10.1021/acsnano.1c10702
_version_ 1784713791347359744
author Cherniukh, Ihor
Sekh, Taras V.
Rainò, Gabriele
Ashton, Olivia J.
Burian, Max
Travesset, Alex
Athanasiou, Modestos
Manoli, Andreas
John, Rohit Abraham
Svyrydenko, Mariia
Morad, Viktoriia
Shynkarenko, Yevhen
Montanarella, Federico
Naumenko, Denys
Amenitsch, Heinz
Itskos, Grigorios
Mahrt, Rainer F.
Stöferle, Thilo
Erni, Rolf
Kovalenko, Maksym V.
Bodnarchuk, Maryna I.
author_facet Cherniukh, Ihor
Sekh, Taras V.
Rainò, Gabriele
Ashton, Olivia J.
Burian, Max
Travesset, Alex
Athanasiou, Modestos
Manoli, Andreas
John, Rohit Abraham
Svyrydenko, Mariia
Morad, Viktoriia
Shynkarenko, Yevhen
Montanarella, Federico
Naumenko, Denys
Amenitsch, Heinz
Itskos, Grigorios
Mahrt, Rainer F.
Stöferle, Thilo
Erni, Rolf
Kovalenko, Maksym V.
Bodnarchuk, Maryna I.
author_sort Cherniukh, Ihor
collection PubMed
description [Image: see text] Nanocrystal (NC) self-assembly is a versatile platform for materials engineering at the mesoscale. The NC shape anisotropy leads to structures not observed with spherical NCs. This work presents a broad structural diversity in multicomponent, long-range ordered superlattices (SLs) comprising highly luminescent cubic CsPbBr(3) NCs (and FAPbBr(3) NCs) coassembled with the spherical, truncated cuboid, and disk-shaped NC building blocks. CsPbBr(3) nanocubes combined with Fe(3)O(4) or NaGdF(4) spheres and truncated cuboid PbS NCs form binary SLs of six structure types with high packing density; namely, AB(2), quasi-ternary ABO(3), and ABO(6) types as well as previously known NaCl, AlB(2), and CuAu types. In these structures, nanocubes preserve orientational coherence. Combining nanocubes with large and thick NaGdF(4) nanodisks results in the orthorhombic SL resembling CaC(2) structure with pairs of CsPbBr(3) NCs on one lattice site. Also, we implement two substrate-free methods of SL formation. Oil-in-oil templated assembly results in the formation of binary supraparticles. Self-assembly at the liquid–air interface from the drying solution cast over the glyceryl triacetate as subphase yields extended thin films of SLs. Collective electronic states arise at low temperatures from the dense, periodic packing of NCs, observed as sharp red-shifted bands at 6 K in the photoluminescence and absorption spectra and persisting up to 200 K.
format Online
Article
Text
id pubmed-9134504
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-91345042022-05-27 Structural Diversity in Multicomponent Nanocrystal Superlattices Comprising Lead Halide Perovskite Nanocubes Cherniukh, Ihor Sekh, Taras V. Rainò, Gabriele Ashton, Olivia J. Burian, Max Travesset, Alex Athanasiou, Modestos Manoli, Andreas John, Rohit Abraham Svyrydenko, Mariia Morad, Viktoriia Shynkarenko, Yevhen Montanarella, Federico Naumenko, Denys Amenitsch, Heinz Itskos, Grigorios Mahrt, Rainer F. Stöferle, Thilo Erni, Rolf Kovalenko, Maksym V. Bodnarchuk, Maryna I. ACS Nano [Image: see text] Nanocrystal (NC) self-assembly is a versatile platform for materials engineering at the mesoscale. The NC shape anisotropy leads to structures not observed with spherical NCs. This work presents a broad structural diversity in multicomponent, long-range ordered superlattices (SLs) comprising highly luminescent cubic CsPbBr(3) NCs (and FAPbBr(3) NCs) coassembled with the spherical, truncated cuboid, and disk-shaped NC building blocks. CsPbBr(3) nanocubes combined with Fe(3)O(4) or NaGdF(4) spheres and truncated cuboid PbS NCs form binary SLs of six structure types with high packing density; namely, AB(2), quasi-ternary ABO(3), and ABO(6) types as well as previously known NaCl, AlB(2), and CuAu types. In these structures, nanocubes preserve orientational coherence. Combining nanocubes with large and thick NaGdF(4) nanodisks results in the orthorhombic SL resembling CaC(2) structure with pairs of CsPbBr(3) NCs on one lattice site. Also, we implement two substrate-free methods of SL formation. Oil-in-oil templated assembly results in the formation of binary supraparticles. Self-assembly at the liquid–air interface from the drying solution cast over the glyceryl triacetate as subphase yields extended thin films of SLs. Collective electronic states arise at low temperatures from the dense, periodic packing of NCs, observed as sharp red-shifted bands at 6 K in the photoluminescence and absorption spectra and persisting up to 200 K. American Chemical Society 2022-04-06 2022-05-24 /pmc/articles/PMC9134504/ /pubmed/35385663 http://dx.doi.org/10.1021/acsnano.1c10702 Text en © 2022 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by-nc-nd/4.0/Permits non-commercial access and re-use, provided that author attribution and integrity are maintained; but does not permit creation of adaptations or other derivative works (https://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Cherniukh, Ihor
Sekh, Taras V.
Rainò, Gabriele
Ashton, Olivia J.
Burian, Max
Travesset, Alex
Athanasiou, Modestos
Manoli, Andreas
John, Rohit Abraham
Svyrydenko, Mariia
Morad, Viktoriia
Shynkarenko, Yevhen
Montanarella, Federico
Naumenko, Denys
Amenitsch, Heinz
Itskos, Grigorios
Mahrt, Rainer F.
Stöferle, Thilo
Erni, Rolf
Kovalenko, Maksym V.
Bodnarchuk, Maryna I.
Structural Diversity in Multicomponent Nanocrystal Superlattices Comprising Lead Halide Perovskite Nanocubes
title Structural Diversity in Multicomponent Nanocrystal Superlattices Comprising Lead Halide Perovskite Nanocubes
title_full Structural Diversity in Multicomponent Nanocrystal Superlattices Comprising Lead Halide Perovskite Nanocubes
title_fullStr Structural Diversity in Multicomponent Nanocrystal Superlattices Comprising Lead Halide Perovskite Nanocubes
title_full_unstemmed Structural Diversity in Multicomponent Nanocrystal Superlattices Comprising Lead Halide Perovskite Nanocubes
title_short Structural Diversity in Multicomponent Nanocrystal Superlattices Comprising Lead Halide Perovskite Nanocubes
title_sort structural diversity in multicomponent nanocrystal superlattices comprising lead halide perovskite nanocubes
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9134504/
https://www.ncbi.nlm.nih.gov/pubmed/35385663
http://dx.doi.org/10.1021/acsnano.1c10702
work_keys_str_mv AT cherniukhihor structuraldiversityinmulticomponentnanocrystalsuperlatticescomprisingleadhalideperovskitenanocubes
AT sekhtarasv structuraldiversityinmulticomponentnanocrystalsuperlatticescomprisingleadhalideperovskitenanocubes
AT rainogabriele structuraldiversityinmulticomponentnanocrystalsuperlatticescomprisingleadhalideperovskitenanocubes
AT ashtonoliviaj structuraldiversityinmulticomponentnanocrystalsuperlatticescomprisingleadhalideperovskitenanocubes
AT burianmax structuraldiversityinmulticomponentnanocrystalsuperlatticescomprisingleadhalideperovskitenanocubes
AT travessetalex structuraldiversityinmulticomponentnanocrystalsuperlatticescomprisingleadhalideperovskitenanocubes
AT athanasioumodestos structuraldiversityinmulticomponentnanocrystalsuperlatticescomprisingleadhalideperovskitenanocubes
AT manoliandreas structuraldiversityinmulticomponentnanocrystalsuperlatticescomprisingleadhalideperovskitenanocubes
AT johnrohitabraham structuraldiversityinmulticomponentnanocrystalsuperlatticescomprisingleadhalideperovskitenanocubes
AT svyrydenkomariia structuraldiversityinmulticomponentnanocrystalsuperlatticescomprisingleadhalideperovskitenanocubes
AT moradviktoriia structuraldiversityinmulticomponentnanocrystalsuperlatticescomprisingleadhalideperovskitenanocubes
AT shynkarenkoyevhen structuraldiversityinmulticomponentnanocrystalsuperlatticescomprisingleadhalideperovskitenanocubes
AT montanarellafederico structuraldiversityinmulticomponentnanocrystalsuperlatticescomprisingleadhalideperovskitenanocubes
AT naumenkodenys structuraldiversityinmulticomponentnanocrystalsuperlatticescomprisingleadhalideperovskitenanocubes
AT amenitschheinz structuraldiversityinmulticomponentnanocrystalsuperlatticescomprisingleadhalideperovskitenanocubes
AT itskosgrigorios structuraldiversityinmulticomponentnanocrystalsuperlatticescomprisingleadhalideperovskitenanocubes
AT mahrtrainerf structuraldiversityinmulticomponentnanocrystalsuperlatticescomprisingleadhalideperovskitenanocubes
AT stoferlethilo structuraldiversityinmulticomponentnanocrystalsuperlatticescomprisingleadhalideperovskitenanocubes
AT ernirolf structuraldiversityinmulticomponentnanocrystalsuperlatticescomprisingleadhalideperovskitenanocubes
AT kovalenkomaksymv structuraldiversityinmulticomponentnanocrystalsuperlatticescomprisingleadhalideperovskitenanocubes
AT bodnarchukmarynai structuraldiversityinmulticomponentnanocrystalsuperlatticescomprisingleadhalideperovskitenanocubes