Cargando…
Deep learning-based automated segmentation of eight brain anatomical regions using head CT images in PET/CT
OBJECTIVE: We aim to propose a deep learning-based method of automated segmentation of eight brain anatomical regions in head computed tomography (CT) images obtained during positron emission tomography/computed tomography (PET/CT) scans. The brain regions include basal ganglia, cerebellum, hemisphe...
Autores principales: | Wang, Tong, Xing, Haiqun, Li, Yige, Wang, Sicong, Liu, Ling, Li, Fang, Jing, Hongli |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9134669/ https://www.ncbi.nlm.nih.gov/pubmed/35614382 http://dx.doi.org/10.1186/s12880-022-00807-4 |
Ejemplares similares
-
A deep learning-based post-processing method for automated pulmonary lobe and airway trees segmentation using chest CT images in PET/CT
por: Xing, Haiqun, et al.
Publicado: (2022) -
Automated lung cancer assessment on 18F-PET/CT using Retina U-Net and anatomical region segmentation
por: Weikert, T., et al.
Publicado: (2023) -
Clinical molecular anatomic imaging: PET, PET/CT, and Spect/CT
por: Von Schulthess, Gustav K
Publicado: (2003) -
Performance evaluation of a new high-sensitivity time-of-flight clinical PET/CT system
por: Huo, Li, et al.
Publicado: (2018) -
Heart and bladder detection and segmentation on FDG PET/CT by deep learning
por: Wang, Xiaoyong, et al.
Publicado: (2022)