Cargando…
Learning patient-level prediction models across multiple healthcare databases: evaluation of ensembles for increasing model transportability
BACKGROUND: Prognostic models that are accurate could help aid medical decision making. Large observational databases often contain temporal medical data for large and diverse populations of patients. It may be possible to learn prognostic models using the large observational data. Often the perform...
Autores principales: | Reps, Jenna Marie, Williams, Ross D., Schuemie, Martijn J., Ryan, Patrick B., Rijnbeek, Peter R. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9134686/ https://www.ncbi.nlm.nih.gov/pubmed/35614485 http://dx.doi.org/10.1186/s12911-022-01879-6 |
Ejemplares similares
-
Design and implementation of a standardized framework to generate and evaluate patient-level prediction models using observational healthcare data
por: Reps, Jenna M, et al.
Publicado: (2018) -
An empirical analysis of dealing with patients who are lost to follow-up when developing prognostic models using a cohort design
por: Reps, Jenna M., et al.
Publicado: (2021) -
Investigating the impact of development and internal validation design when training prognostic models using a retrospective cohort in big US observational healthcare data
por: Reps, Jenna M, et al.
Publicado: (2021) -
Identifying the DEAD: Development and Validation of a Patient-Level Model to Predict Death Status in Population-Level Claims Data
por: Reps, Jenna M., et al.
Publicado: (2019) -
90-Day all-cause mortality can be predicted following a total knee replacement: an international, network study to develop and validate a prediction model
por: Williams, Ross D., et al.
Publicado: (2021)