Cargando…
Gut Dysbiosis and Fecal Calprotectin Predict Response to Immune Checkpoint Inhibitors in Patients With Hepatocellular Carcinoma
The gut microbiota is a well‐known prognostic factor and a modulator of treatment sensitivity in patients with cancers treated with immune checkpoint inhibitors. However, data on hepatocellular carcinoma (HCC) are lacking. This study aimed to evaluate the prognostic role of the gut microbiota and ch...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9134810/ https://www.ncbi.nlm.nih.gov/pubmed/35261212 http://dx.doi.org/10.1002/hep4.1905 |
_version_ | 1784713833209659392 |
---|---|
author | Ponziani, Francesca Romana De Luca, Angela Picca, Anna Marzetti, Emanuele Petito, Valentina Del Chierico, Federica Reddel, Sofia Paroni Sterbini, Francesco Sanguinetti, Maurizio Putignani, Lorenza Gasbarrini, Antonio Pompili, Maurizio |
author_facet | Ponziani, Francesca Romana De Luca, Angela Picca, Anna Marzetti, Emanuele Petito, Valentina Del Chierico, Federica Reddel, Sofia Paroni Sterbini, Francesco Sanguinetti, Maurizio Putignani, Lorenza Gasbarrini, Antonio Pompili, Maurizio |
author_sort | Ponziani, Francesca Romana |
collection | PubMed |
description | The gut microbiota is a well‐known prognostic factor and a modulator of treatment sensitivity in patients with cancers treated with immune checkpoint inhibitors. However, data on hepatocellular carcinoma (HCC) are lacking. This study aimed to evaluate the prognostic role of the gut microbiota and changes produced by immunotherapy on the intestinal environment in patients with cirrhosis and HCC. Eleven patients treated with Tremelimumab and/or Durvalumab were included in the analysis. All study participants underwent gut microbiota profiling, quantification of fecal calprotectin, serum levels of zonulin‐1, lipopolysaccharide binding protein (LBP), and programmed death‐ligand 1 (PD‐L1) at baseline and at each treatment cycle until the third cycle, then every three cycles until treatment discontinuation or last visit. The 6 patients who achieved disease control (DC) showed lower pretreatment fecal calprotectin (median, 12.5; interquartile range [IQR], 5‐29 vs. median, 116; IQR, 59‐129 µg/g; P = 0.047) and PD‐L1 serum levels (median, 0.08; IQR, 0.07‐0.09 vs. median, 1.04; IQR, 0.17‐1.95 ng/mL; P = 0.02) than nonresponders. The relative abundance of Akkermansia (log2 fold change [FC], 2.72; adjusted P [Padj] = 0.012) was increased, whereas that of Enterobacteriaceae (log2 FC, −2.34; Padj = 0.04) was reduced in the DC group. During treatment, fecal calprotectin showed a temporal evolution opposite to the Akkermansia to Enterobacteriaceae ratio and gut microbiota alpha diversity, but similar to zonulin‐1 and LBP. Bifidobacterium had a stable behavior in patients with a long follow‐up, while Akkermansia was more variable. Akkermansia and Bifidobacterium showed similar temporal patterns and causative relationships with Prevotella, Veillonella, Ruminococcus, Roseburia, Lachnospira, Faecalibacterium, and Clostridium. Conclusion: A favorable composition of the gut microbiota and low intestinal inflammation are associated with achieving DC. The intestinal environment changes dynamically during therapy. |
format | Online Article Text |
id | pubmed-9134810 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-91348102022-06-04 Gut Dysbiosis and Fecal Calprotectin Predict Response to Immune Checkpoint Inhibitors in Patients With Hepatocellular Carcinoma Ponziani, Francesca Romana De Luca, Angela Picca, Anna Marzetti, Emanuele Petito, Valentina Del Chierico, Federica Reddel, Sofia Paroni Sterbini, Francesco Sanguinetti, Maurizio Putignani, Lorenza Gasbarrini, Antonio Pompili, Maurizio Hepatol Commun Original Articles The gut microbiota is a well‐known prognostic factor and a modulator of treatment sensitivity in patients with cancers treated with immune checkpoint inhibitors. However, data on hepatocellular carcinoma (HCC) are lacking. This study aimed to evaluate the prognostic role of the gut microbiota and changes produced by immunotherapy on the intestinal environment in patients with cirrhosis and HCC. Eleven patients treated with Tremelimumab and/or Durvalumab were included in the analysis. All study participants underwent gut microbiota profiling, quantification of fecal calprotectin, serum levels of zonulin‐1, lipopolysaccharide binding protein (LBP), and programmed death‐ligand 1 (PD‐L1) at baseline and at each treatment cycle until the third cycle, then every three cycles until treatment discontinuation or last visit. The 6 patients who achieved disease control (DC) showed lower pretreatment fecal calprotectin (median, 12.5; interquartile range [IQR], 5‐29 vs. median, 116; IQR, 59‐129 µg/g; P = 0.047) and PD‐L1 serum levels (median, 0.08; IQR, 0.07‐0.09 vs. median, 1.04; IQR, 0.17‐1.95 ng/mL; P = 0.02) than nonresponders. The relative abundance of Akkermansia (log2 fold change [FC], 2.72; adjusted P [Padj] = 0.012) was increased, whereas that of Enterobacteriaceae (log2 FC, −2.34; Padj = 0.04) was reduced in the DC group. During treatment, fecal calprotectin showed a temporal evolution opposite to the Akkermansia to Enterobacteriaceae ratio and gut microbiota alpha diversity, but similar to zonulin‐1 and LBP. Bifidobacterium had a stable behavior in patients with a long follow‐up, while Akkermansia was more variable. Akkermansia and Bifidobacterium showed similar temporal patterns and causative relationships with Prevotella, Veillonella, Ruminococcus, Roseburia, Lachnospira, Faecalibacterium, and Clostridium. Conclusion: A favorable composition of the gut microbiota and low intestinal inflammation are associated with achieving DC. The intestinal environment changes dynamically during therapy. John Wiley and Sons Inc. 2022-03-09 /pmc/articles/PMC9134810/ /pubmed/35261212 http://dx.doi.org/10.1002/hep4.1905 Text en © 2022 The Authors. Hepatology Communications published by Wiley Periodicals LLC on behalf of American Association for the Study of Liver Diseases. https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ (https://creativecommons.org/licenses/by-nc-nd/4.0/) License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made. |
spellingShingle | Original Articles Ponziani, Francesca Romana De Luca, Angela Picca, Anna Marzetti, Emanuele Petito, Valentina Del Chierico, Federica Reddel, Sofia Paroni Sterbini, Francesco Sanguinetti, Maurizio Putignani, Lorenza Gasbarrini, Antonio Pompili, Maurizio Gut Dysbiosis and Fecal Calprotectin Predict Response to Immune Checkpoint Inhibitors in Patients With Hepatocellular Carcinoma |
title | Gut Dysbiosis and Fecal Calprotectin Predict Response to Immune Checkpoint Inhibitors in Patients With Hepatocellular Carcinoma |
title_full | Gut Dysbiosis and Fecal Calprotectin Predict Response to Immune Checkpoint Inhibitors in Patients With Hepatocellular Carcinoma |
title_fullStr | Gut Dysbiosis and Fecal Calprotectin Predict Response to Immune Checkpoint Inhibitors in Patients With Hepatocellular Carcinoma |
title_full_unstemmed | Gut Dysbiosis and Fecal Calprotectin Predict Response to Immune Checkpoint Inhibitors in Patients With Hepatocellular Carcinoma |
title_short | Gut Dysbiosis and Fecal Calprotectin Predict Response to Immune Checkpoint Inhibitors in Patients With Hepatocellular Carcinoma |
title_sort | gut dysbiosis and fecal calprotectin predict response to immune checkpoint inhibitors in patients with hepatocellular carcinoma |
topic | Original Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9134810/ https://www.ncbi.nlm.nih.gov/pubmed/35261212 http://dx.doi.org/10.1002/hep4.1905 |
work_keys_str_mv | AT ponzianifrancescaromana gutdysbiosisandfecalcalprotectinpredictresponsetoimmunecheckpointinhibitorsinpatientswithhepatocellularcarcinoma AT delucaangela gutdysbiosisandfecalcalprotectinpredictresponsetoimmunecheckpointinhibitorsinpatientswithhepatocellularcarcinoma AT piccaanna gutdysbiosisandfecalcalprotectinpredictresponsetoimmunecheckpointinhibitorsinpatientswithhepatocellularcarcinoma AT marzettiemanuele gutdysbiosisandfecalcalprotectinpredictresponsetoimmunecheckpointinhibitorsinpatientswithhepatocellularcarcinoma AT petitovalentina gutdysbiosisandfecalcalprotectinpredictresponsetoimmunecheckpointinhibitorsinpatientswithhepatocellularcarcinoma AT delchiericofederica gutdysbiosisandfecalcalprotectinpredictresponsetoimmunecheckpointinhibitorsinpatientswithhepatocellularcarcinoma AT reddelsofia gutdysbiosisandfecalcalprotectinpredictresponsetoimmunecheckpointinhibitorsinpatientswithhepatocellularcarcinoma AT paronisterbinifrancesco gutdysbiosisandfecalcalprotectinpredictresponsetoimmunecheckpointinhibitorsinpatientswithhepatocellularcarcinoma AT sanguinettimaurizio gutdysbiosisandfecalcalprotectinpredictresponsetoimmunecheckpointinhibitorsinpatientswithhepatocellularcarcinoma AT putignanilorenza gutdysbiosisandfecalcalprotectinpredictresponsetoimmunecheckpointinhibitorsinpatientswithhepatocellularcarcinoma AT gasbarriniantonio gutdysbiosisandfecalcalprotectinpredictresponsetoimmunecheckpointinhibitorsinpatientswithhepatocellularcarcinoma AT pompilimaurizio gutdysbiosisandfecalcalprotectinpredictresponsetoimmunecheckpointinhibitorsinpatientswithhepatocellularcarcinoma |