Cargando…
Surgical data science – from concepts toward clinical translation
Recent developments in data science in general and machine learning in particular have transformed the way experts envision the future of surgery. Surgical Data Science (SDS) is a new research field that aims to improve the quality of interventional healthcare through the capture, organization, anal...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9135051/ https://www.ncbi.nlm.nih.gov/pubmed/34879287 http://dx.doi.org/10.1016/j.media.2021.102306 |
_version_ | 1784713885566107648 |
---|---|
author | Maier-Hein, Lena Eisenmann, Matthias Sarikaya, Duygu März, Keno Collins, Toby Malpani, Anand Fallert, Johannes Feussner, Hubertus Giannarou, Stamatia Mascagni, Pietro Nakawala, Hirenkumar Park, Adrian Pugh, Carla Stoyanov, Danail Vedula, Swaroop S. Cleary, Kevin Fichtinger, Gabor Forestier, Germain Gibaud, Bernard Grantcharov, Teodor Hashizume, Makoto Heckmann-Nötzel, Doreen Kenngott, Hannes G. Kikinis, Ron Mündermann, Lars Navab, Nassir Onogur, Sinan Roß, Tobias Sznitman, Raphael Taylor, Russell H. Tizabi, Minu D. Wagner, Martin Hager, Gregory D. Neumuth, Thomas Padoy, Nicolas Collins, Justin Gockel, Ines Goedeke, Jan Hashimoto, Daniel A. Joyeux, Luc Lam, Kyle Leff, Daniel R. Madani, Amin Marcus, Hani J. Meireles, Ozanan Seitel, Alexander Teber, Dogu Ückert, Frank Müller-Stich, Beat P. Jannin, Pierre Speidel, Stefanie |
author_facet | Maier-Hein, Lena Eisenmann, Matthias Sarikaya, Duygu März, Keno Collins, Toby Malpani, Anand Fallert, Johannes Feussner, Hubertus Giannarou, Stamatia Mascagni, Pietro Nakawala, Hirenkumar Park, Adrian Pugh, Carla Stoyanov, Danail Vedula, Swaroop S. Cleary, Kevin Fichtinger, Gabor Forestier, Germain Gibaud, Bernard Grantcharov, Teodor Hashizume, Makoto Heckmann-Nötzel, Doreen Kenngott, Hannes G. Kikinis, Ron Mündermann, Lars Navab, Nassir Onogur, Sinan Roß, Tobias Sznitman, Raphael Taylor, Russell H. Tizabi, Minu D. Wagner, Martin Hager, Gregory D. Neumuth, Thomas Padoy, Nicolas Collins, Justin Gockel, Ines Goedeke, Jan Hashimoto, Daniel A. Joyeux, Luc Lam, Kyle Leff, Daniel R. Madani, Amin Marcus, Hani J. Meireles, Ozanan Seitel, Alexander Teber, Dogu Ückert, Frank Müller-Stich, Beat P. Jannin, Pierre Speidel, Stefanie |
author_sort | Maier-Hein, Lena |
collection | PubMed |
description | Recent developments in data science in general and machine learning in particular have transformed the way experts envision the future of surgery. Surgical Data Science (SDS) is a new research field that aims to improve the quality of interventional healthcare through the capture, organization, analysis and modeling of data. While an increasing number of data-driven approaches and clinical applications have been studied in the fields of radiological and clinical data science, translational success stories are still lacking in surgery. In this publication, we shed light on the underlying reasons and provide a roadmap for future advances in the field. Based on an international workshop involving leading researchers in the field of SDS, we review current practice, key achievements and initiatives as well as available standards and tools for a number of topics relevant to the field, namely (1) infrastructure for data acquisition, storage and access in the presence of regulatory constraints, (2) data annotation and sharing and (3) data analytics. We further complement this technical perspective with (4) a review of currently available SDS products and the translational progress from academia and (5) a roadmap for faster clinical translation and exploitation of the full potential of SDS, based on an international multi-round Delphi process. |
format | Online Article Text |
id | pubmed-9135051 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
record_format | MEDLINE/PubMed |
spelling | pubmed-91350512023-02-01 Surgical data science – from concepts toward clinical translation Maier-Hein, Lena Eisenmann, Matthias Sarikaya, Duygu März, Keno Collins, Toby Malpani, Anand Fallert, Johannes Feussner, Hubertus Giannarou, Stamatia Mascagni, Pietro Nakawala, Hirenkumar Park, Adrian Pugh, Carla Stoyanov, Danail Vedula, Swaroop S. Cleary, Kevin Fichtinger, Gabor Forestier, Germain Gibaud, Bernard Grantcharov, Teodor Hashizume, Makoto Heckmann-Nötzel, Doreen Kenngott, Hannes G. Kikinis, Ron Mündermann, Lars Navab, Nassir Onogur, Sinan Roß, Tobias Sznitman, Raphael Taylor, Russell H. Tizabi, Minu D. Wagner, Martin Hager, Gregory D. Neumuth, Thomas Padoy, Nicolas Collins, Justin Gockel, Ines Goedeke, Jan Hashimoto, Daniel A. Joyeux, Luc Lam, Kyle Leff, Daniel R. Madani, Amin Marcus, Hani J. Meireles, Ozanan Seitel, Alexander Teber, Dogu Ückert, Frank Müller-Stich, Beat P. Jannin, Pierre Speidel, Stefanie Med Image Anal Article Recent developments in data science in general and machine learning in particular have transformed the way experts envision the future of surgery. Surgical Data Science (SDS) is a new research field that aims to improve the quality of interventional healthcare through the capture, organization, analysis and modeling of data. While an increasing number of data-driven approaches and clinical applications have been studied in the fields of radiological and clinical data science, translational success stories are still lacking in surgery. In this publication, we shed light on the underlying reasons and provide a roadmap for future advances in the field. Based on an international workshop involving leading researchers in the field of SDS, we review current practice, key achievements and initiatives as well as available standards and tools for a number of topics relevant to the field, namely (1) infrastructure for data acquisition, storage and access in the presence of regulatory constraints, (2) data annotation and sharing and (3) data analytics. We further complement this technical perspective with (4) a review of currently available SDS products and the translational progress from academia and (5) a roadmap for faster clinical translation and exploitation of the full potential of SDS, based on an international multi-round Delphi process. 2022-02 2021-11-18 /pmc/articles/PMC9135051/ /pubmed/34879287 http://dx.doi.org/10.1016/j.media.2021.102306 Text en https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) ) |
spellingShingle | Article Maier-Hein, Lena Eisenmann, Matthias Sarikaya, Duygu März, Keno Collins, Toby Malpani, Anand Fallert, Johannes Feussner, Hubertus Giannarou, Stamatia Mascagni, Pietro Nakawala, Hirenkumar Park, Adrian Pugh, Carla Stoyanov, Danail Vedula, Swaroop S. Cleary, Kevin Fichtinger, Gabor Forestier, Germain Gibaud, Bernard Grantcharov, Teodor Hashizume, Makoto Heckmann-Nötzel, Doreen Kenngott, Hannes G. Kikinis, Ron Mündermann, Lars Navab, Nassir Onogur, Sinan Roß, Tobias Sznitman, Raphael Taylor, Russell H. Tizabi, Minu D. Wagner, Martin Hager, Gregory D. Neumuth, Thomas Padoy, Nicolas Collins, Justin Gockel, Ines Goedeke, Jan Hashimoto, Daniel A. Joyeux, Luc Lam, Kyle Leff, Daniel R. Madani, Amin Marcus, Hani J. Meireles, Ozanan Seitel, Alexander Teber, Dogu Ückert, Frank Müller-Stich, Beat P. Jannin, Pierre Speidel, Stefanie Surgical data science – from concepts toward clinical translation |
title | Surgical data science – from concepts toward clinical translation |
title_full | Surgical data science – from concepts toward clinical translation |
title_fullStr | Surgical data science – from concepts toward clinical translation |
title_full_unstemmed | Surgical data science – from concepts toward clinical translation |
title_short | Surgical data science – from concepts toward clinical translation |
title_sort | surgical data science – from concepts toward clinical translation |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9135051/ https://www.ncbi.nlm.nih.gov/pubmed/34879287 http://dx.doi.org/10.1016/j.media.2021.102306 |
work_keys_str_mv | AT maierheinlena surgicaldatasciencefromconceptstowardclinicaltranslation AT eisenmannmatthias surgicaldatasciencefromconceptstowardclinicaltranslation AT sarikayaduygu surgicaldatasciencefromconceptstowardclinicaltranslation AT marzkeno surgicaldatasciencefromconceptstowardclinicaltranslation AT collinstoby surgicaldatasciencefromconceptstowardclinicaltranslation AT malpanianand surgicaldatasciencefromconceptstowardclinicaltranslation AT fallertjohannes surgicaldatasciencefromconceptstowardclinicaltranslation AT feussnerhubertus surgicaldatasciencefromconceptstowardclinicaltranslation AT giannaroustamatia surgicaldatasciencefromconceptstowardclinicaltranslation AT mascagnipietro surgicaldatasciencefromconceptstowardclinicaltranslation AT nakawalahirenkumar surgicaldatasciencefromconceptstowardclinicaltranslation AT parkadrian surgicaldatasciencefromconceptstowardclinicaltranslation AT pughcarla surgicaldatasciencefromconceptstowardclinicaltranslation AT stoyanovdanail surgicaldatasciencefromconceptstowardclinicaltranslation AT vedulaswaroops surgicaldatasciencefromconceptstowardclinicaltranslation AT clearykevin surgicaldatasciencefromconceptstowardclinicaltranslation AT fichtingergabor surgicaldatasciencefromconceptstowardclinicaltranslation AT forestiergermain surgicaldatasciencefromconceptstowardclinicaltranslation AT gibaudbernard surgicaldatasciencefromconceptstowardclinicaltranslation AT grantcharovteodor surgicaldatasciencefromconceptstowardclinicaltranslation AT hashizumemakoto surgicaldatasciencefromconceptstowardclinicaltranslation AT heckmannnotzeldoreen surgicaldatasciencefromconceptstowardclinicaltranslation AT kenngotthannesg surgicaldatasciencefromconceptstowardclinicaltranslation AT kikinisron surgicaldatasciencefromconceptstowardclinicaltranslation AT mundermannlars surgicaldatasciencefromconceptstowardclinicaltranslation AT navabnassir surgicaldatasciencefromconceptstowardclinicaltranslation AT onogursinan surgicaldatasciencefromconceptstowardclinicaltranslation AT roßtobias surgicaldatasciencefromconceptstowardclinicaltranslation AT sznitmanraphael surgicaldatasciencefromconceptstowardclinicaltranslation AT taylorrussellh surgicaldatasciencefromconceptstowardclinicaltranslation AT tizabiminud surgicaldatasciencefromconceptstowardclinicaltranslation AT wagnermartin surgicaldatasciencefromconceptstowardclinicaltranslation AT hagergregoryd surgicaldatasciencefromconceptstowardclinicaltranslation AT neumuththomas surgicaldatasciencefromconceptstowardclinicaltranslation AT padoynicolas surgicaldatasciencefromconceptstowardclinicaltranslation AT collinsjustin surgicaldatasciencefromconceptstowardclinicaltranslation AT gockelines surgicaldatasciencefromconceptstowardclinicaltranslation AT goedekejan surgicaldatasciencefromconceptstowardclinicaltranslation AT hashimotodaniela surgicaldatasciencefromconceptstowardclinicaltranslation AT joyeuxluc surgicaldatasciencefromconceptstowardclinicaltranslation AT lamkyle surgicaldatasciencefromconceptstowardclinicaltranslation AT leffdanielr surgicaldatasciencefromconceptstowardclinicaltranslation AT madaniamin surgicaldatasciencefromconceptstowardclinicaltranslation AT marcushanij surgicaldatasciencefromconceptstowardclinicaltranslation AT meirelesozanan surgicaldatasciencefromconceptstowardclinicaltranslation AT seitelalexander surgicaldatasciencefromconceptstowardclinicaltranslation AT teberdogu surgicaldatasciencefromconceptstowardclinicaltranslation AT uckertfrank surgicaldatasciencefromconceptstowardclinicaltranslation AT mullerstichbeatp surgicaldatasciencefromconceptstowardclinicaltranslation AT janninpierre surgicaldatasciencefromconceptstowardclinicaltranslation AT speidelstefanie surgicaldatasciencefromconceptstowardclinicaltranslation |