Cargando…
Multiclass classification of whole‐body scintigraphic images using a self‐defined convolutional neural network with attention modules
PURPOSE: A self‐defined convolutional neural network is developed to automatically classify whole‐body scintigraphic images of concern (i.e., the normal, metastasis, arthritis, and thyroid carcinoma), automatically detecting diseases with whole‐body bone scintigraphy. METHODS: A set of parameter tra...
Autores principales: | Lin, Qiang, Cao, Chuangui, Li, Tongtong, Cao, Yongchun, Man, Zhengxing, Wang, Haijun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9135133/ https://www.ncbi.nlm.nih.gov/pubmed/34455613 http://dx.doi.org/10.1002/mp.15196 |
Ejemplares similares
-
Method for simulating dose reduction in digital mammography using the Anscombe transformation
por: Borges, Lucas R., et al.
Publicado: (2016) -
PEAR: PEriodic And fixed Rank separation for fast fMRI
por: Weizman, Lior, et al.
Publicado: (2017) -
Technical note: Accelerated nonrigid motion‐compensated isotropic 3D coronary MR angiography
por: Correia, Teresa, et al.
Publicado: (2017) -
An edge‐readout, multilayer detector for positron emission tomography
por: Li, Xin, et al.
Publicado: (2018) -
Patient‐based 4D digital breast phantom for perfusion contrast‐enhanced breast CT imaging
por: Caballo, Marco, et al.
Publicado: (2018)