Cargando…
SASDL and RBATQ: Sparse Autoencoder With Swarm Based Deep Learning and Reinforcement Based Q-Learning for EEG Classification
The most vital information about the electrical activities of the brain can be obtained with the help of Electroencephalography (EEG) signals. It is quite a powerful tool to analyze the neural activities of the brain and various neurological disorders like epilepsy, schizophrenia, sleep related diso...
Formato: | Online Artículo Texto |
---|---|
Lenguaje: | English |
Publicado: |
IEEE
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9135179/ https://www.ncbi.nlm.nih.gov/pubmed/35770240 http://dx.doi.org/10.1109/OJEMB.2022.3161837 |
Ejemplares similares
-
Sparse measures with swarm-based pliable hidden Markov model and deep learning for EEG classification
por: Prabhakar, Sunil Kumar, et al.
Publicado: (2022) -
EEG-Based Emotion Classification Using a Deep Neural Network and Sparse Autoencoder
por: Liu, Junxiu, et al.
Publicado: (2020) -
Deep Sparse Autoencoder and Recursive Neural Network for EEG Emotion Recognition
por: Li, Qi, et al.
Publicado: (2022) -
An Intelligent EEG Classification Methodology Based on Sparse Representation Enhanced Deep Learning Networks
por: Huang, Jing-Shan, et al.
Publicado: (2020) -
Optimal Deep Stacked Sparse Autoencoder Based Osteosarcoma Detection and Classification Model
por: Fakieh, Bahjat, et al.
Publicado: (2022)