Cargando…
Automated assessment reveals that the extinction risk of reptiles is widely underestimated across space and phylogeny
The Red List of Threatened Species, published by the International Union for Conservation of Nature (IUCN), is a crucial tool for conservation decision-making. However, despite substantial effort, numerous species remain unassessed or have insufficient data available to be assigned a Red List extinc...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9135251/ https://www.ncbi.nlm.nih.gov/pubmed/35617356 http://dx.doi.org/10.1371/journal.pbio.3001544 |
_version_ | 1784713921648656384 |
---|---|
author | Caetano, Gabriel Henrique de Oliveira Chapple, David G. Grenyer, Richard Raz, Tal Rosenblatt, Jonathan Tingley, Reid Böhm, Monika Meiri, Shai Roll, Uri |
author_facet | Caetano, Gabriel Henrique de Oliveira Chapple, David G. Grenyer, Richard Raz, Tal Rosenblatt, Jonathan Tingley, Reid Böhm, Monika Meiri, Shai Roll, Uri |
author_sort | Caetano, Gabriel Henrique de Oliveira |
collection | PubMed |
description | The Red List of Threatened Species, published by the International Union for Conservation of Nature (IUCN), is a crucial tool for conservation decision-making. However, despite substantial effort, numerous species remain unassessed or have insufficient data available to be assigned a Red List extinction risk category. Moreover, the Red Listing process is subject to various sources of uncertainty and bias. The development of robust automated assessment methods could serve as an efficient and highly useful tool to accelerate the assessment process and offer provisional assessments. Here, we aimed to (1) present a machine learning–based automated extinction risk assessment method that can be used on less known species; (2) offer provisional assessments for all reptiles—the only major tetrapod group without a comprehensive Red List assessment; and (3) evaluate potential effects of human decision biases on the outcome of assessments. We use the method presented here to assess 4,369 reptile species that are currently unassessed or classified as Data Deficient by the IUCN. The models used in our predictions were 90% accurate in classifying species as threatened/nonthreatened, and 84% accurate in predicting specific extinction risk categories. Unassessed and Data Deficient reptiles were considerably more likely to be threatened than assessed species, adding to mounting evidence that these species warrant more conservation attention. The overall proportion of threatened species greatly increased when we included our provisional assessments. Assessor identities strongly affected prediction outcomes, suggesting that assessor effects need to be carefully considered in extinction risk assessments. Regions and taxa we identified as likely to be more threatened should be given increased attention in new assessments and conservation planning. Lastly, the method we present here can be easily implemented to help bridge the assessment gap for other less known taxa. |
format | Online Article Text |
id | pubmed-9135251 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-91352512022-05-27 Automated assessment reveals that the extinction risk of reptiles is widely underestimated across space and phylogeny Caetano, Gabriel Henrique de Oliveira Chapple, David G. Grenyer, Richard Raz, Tal Rosenblatt, Jonathan Tingley, Reid Böhm, Monika Meiri, Shai Roll, Uri PLoS Biol Research Article The Red List of Threatened Species, published by the International Union for Conservation of Nature (IUCN), is a crucial tool for conservation decision-making. However, despite substantial effort, numerous species remain unassessed or have insufficient data available to be assigned a Red List extinction risk category. Moreover, the Red Listing process is subject to various sources of uncertainty and bias. The development of robust automated assessment methods could serve as an efficient and highly useful tool to accelerate the assessment process and offer provisional assessments. Here, we aimed to (1) present a machine learning–based automated extinction risk assessment method that can be used on less known species; (2) offer provisional assessments for all reptiles—the only major tetrapod group without a comprehensive Red List assessment; and (3) evaluate potential effects of human decision biases on the outcome of assessments. We use the method presented here to assess 4,369 reptile species that are currently unassessed or classified as Data Deficient by the IUCN. The models used in our predictions were 90% accurate in classifying species as threatened/nonthreatened, and 84% accurate in predicting specific extinction risk categories. Unassessed and Data Deficient reptiles were considerably more likely to be threatened than assessed species, adding to mounting evidence that these species warrant more conservation attention. The overall proportion of threatened species greatly increased when we included our provisional assessments. Assessor identities strongly affected prediction outcomes, suggesting that assessor effects need to be carefully considered in extinction risk assessments. Regions and taxa we identified as likely to be more threatened should be given increased attention in new assessments and conservation planning. Lastly, the method we present here can be easily implemented to help bridge the assessment gap for other less known taxa. Public Library of Science 2022-05-26 /pmc/articles/PMC9135251/ /pubmed/35617356 http://dx.doi.org/10.1371/journal.pbio.3001544 Text en © 2022 Caetano et al https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Caetano, Gabriel Henrique de Oliveira Chapple, David G. Grenyer, Richard Raz, Tal Rosenblatt, Jonathan Tingley, Reid Böhm, Monika Meiri, Shai Roll, Uri Automated assessment reveals that the extinction risk of reptiles is widely underestimated across space and phylogeny |
title | Automated assessment reveals that the extinction risk of reptiles is widely underestimated across space and phylogeny |
title_full | Automated assessment reveals that the extinction risk of reptiles is widely underestimated across space and phylogeny |
title_fullStr | Automated assessment reveals that the extinction risk of reptiles is widely underestimated across space and phylogeny |
title_full_unstemmed | Automated assessment reveals that the extinction risk of reptiles is widely underestimated across space and phylogeny |
title_short | Automated assessment reveals that the extinction risk of reptiles is widely underestimated across space and phylogeny |
title_sort | automated assessment reveals that the extinction risk of reptiles is widely underestimated across space and phylogeny |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9135251/ https://www.ncbi.nlm.nih.gov/pubmed/35617356 http://dx.doi.org/10.1371/journal.pbio.3001544 |
work_keys_str_mv | AT caetanogabrielhenriquedeoliveira automatedassessmentrevealsthattheextinctionriskofreptilesiswidelyunderestimatedacrossspaceandphylogeny AT chappledavidg automatedassessmentrevealsthattheextinctionriskofreptilesiswidelyunderestimatedacrossspaceandphylogeny AT grenyerrichard automatedassessmentrevealsthattheextinctionriskofreptilesiswidelyunderestimatedacrossspaceandphylogeny AT raztal automatedassessmentrevealsthattheextinctionriskofreptilesiswidelyunderestimatedacrossspaceandphylogeny AT rosenblattjonathan automatedassessmentrevealsthattheextinctionriskofreptilesiswidelyunderestimatedacrossspaceandphylogeny AT tingleyreid automatedassessmentrevealsthattheextinctionriskofreptilesiswidelyunderestimatedacrossspaceandphylogeny AT bohmmonika automatedassessmentrevealsthattheextinctionriskofreptilesiswidelyunderestimatedacrossspaceandphylogeny AT meirishai automatedassessmentrevealsthattheextinctionriskofreptilesiswidelyunderestimatedacrossspaceandphylogeny AT rolluri automatedassessmentrevealsthattheextinctionriskofreptilesiswidelyunderestimatedacrossspaceandphylogeny |