Cargando…
Factors influencing the pigment composition and dynamics of photoautotrophic picoplankton in shallow eutrophic lakes
Photoautotrophic picoplankton (0.2–2 μm) can be a major contributor to primary production and play a significant part in the ecosystem carbon flow. However, the understanding about the dynamics of both eukaryotic and prokaryotic components of picoplankton in shallow eutrophic freshwater environments...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9135284/ https://www.ncbi.nlm.nih.gov/pubmed/35617295 http://dx.doi.org/10.1371/journal.pone.0267133 |
Sumario: | Photoautotrophic picoplankton (0.2–2 μm) can be a major contributor to primary production and play a significant part in the ecosystem carbon flow. However, the understanding about the dynamics of both eukaryotic and prokaryotic components of picoplankton in shallow eutrophic freshwater environments is still poor. Very few studies in these ecosystems reveal the taxonomic composition of picoeukaryotes. The main objective of this study was to investigate the seasonal dynamics of phototrophic picoplankton with the emphasis on the eukaryote community composition in a large shallow, eutrophic lake of the northern temperate zone (Lake Võrtsjärv). Phytoplankton pigments were employed to determine the taxonomic composition of photoautotrophic picoplankton. We found out that photoautotrophic picoplankton constitutes an important part of the phytoplankton community in Lake Võrtsjärv and its contribution can be highly variable (from ~9.3% to ~39%) in different years. The eukaryotic photoautotrophic picoplankton was dominated by diatoms followed by chrysophytes and other minor groups. Picoeukaryotes were prevailing in low-light conditions and low temperatures as their predominance in the picoplankton community was tightly linked to the presence or absence of ice cover. Ice cover strongly suppressed the growth of picocyanobacteria. Total phosphorus, turbidity and metazooplankton abundance had a clear relationship with photoautotrophic picoplankton chlorophyll a. |
---|