Cargando…

Safety and immunogenicity of a live-attenuated influenza virus vector-based intranasal SARS-CoV-2 vaccine in adults: randomised, double-blind, placebo-controlled, phase 1 and 2 trials

BACKGROUND: All currently available SARS-CoV-2 vaccines are administered by intramuscular injection. We aimed to evaluate the safety and immunogenicity of a live-attenuated influenza virus vector-based SARS-CoV-2 vaccine (dNS1-RBD) administered by intranasal spray in healthy adults. METHODS: We did...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhu, Fengcai, Zhuang, Chunlan, Chu, Kai, Zhang, Liang, Zhao, Hui, Huang, Shoujie, Su, Yingying, Lin, Hongyan, Yang, Changlin, Jiang, Hanmin, Zang, Xia, Liu, Donglin, Pan, Hongxing, Hu, Yuemei, Liu, Xiaohui, Chen, Qi, Song, Qiaoqiao, Quan, Jiali, Huang, Zehong, Zhong, Guohua, Chen, Junyu, Han, Jinle, Sun, Hong, Cui, Lunbiao, Li, Jingxin, Chen, Yixin, Zhang, Tianying, Ye, Xiangzhong, Li, Changgui, Wu, Ting, Zhang, Jun, Xia, Ning-Shao
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier Ltd. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9135375/
https://www.ncbi.nlm.nih.gov/pubmed/35644168
http://dx.doi.org/10.1016/S2213-2600(22)00131-X
Descripción
Sumario:BACKGROUND: All currently available SARS-CoV-2 vaccines are administered by intramuscular injection. We aimed to evaluate the safety and immunogenicity of a live-attenuated influenza virus vector-based SARS-CoV-2 vaccine (dNS1-RBD) administered by intranasal spray in healthy adults. METHODS: We did double-blind, randomised, placebo-controlled phase 1 and 2 trials, followed by a phase 2 extension trial, at a single centre in Jiangsu, China. Healthy adults (≥18 years) who had negative serum or fingertip blood total antibody tests for SARS-CoV-2 (in phases 1 and 2), with no prevalent SARS-CoV-2 infection or history of infection and no SARS-CoV-2 vaccination history (in all three trials reported here), were enrolled. Participants were randomly allocated (4:1 in phase 1, 2:1 in phase 2, and 1:1 in the extension trial) to receive two intranasal doses of the dNS1-RBD vaccine or placebo on days 0 and 14 or, for half of the participants in phase 2, on days 0 and 21. To avoid cross-contamination during administration, vaccine and placebo recipients were vaccinated in separate rooms in the extension trial. The phase 1 primary outcome was safety (adverse events recorded on days 0–44; serious adverse events recorded from day 0 until 12 months after the second dose). In the phase 2 and extension trials, the primary immunogenicity outcomes were SARS-CoV-2-specific T-cell response in peripheral blood (measured by IFN-γ ELISpot), proportion of participants with positive conversion for SARS-CoV-2 receptor-binding domain (RBD)-specific IgG and secretory IgA (s-IgA) antibodies, and concentration of SARS-CoV-2 RBD IgG in serum and SARS-CoV-2 RBD s-IgA in the nasopharynx (measured by ELISA) at 1 month after the second dose in the per-protocol set for immunogenicity. χ(2) test and Fisher's exact test were used to analyse categorical data, and t test and Wilcoxon rank sum test to compare the measurement data between groups. These trials were registered with the Chinese Clinical Trial Registry (ChiCTR2000037782, ChiCTR2000039715, and ChiCTR2100048316). FINDINGS: Between Sept 1, 2020, and July 4, 2021, 63, 724, and 297 participants without a history of SARS-CoV-2 vaccination were enrolled in the phase 1, phase 2, and extension trials, respectively. At least one adverse reaction after vaccination was reported in 133 (19%) of 684 participants in the vaccine groups. Most adverse reactions were mild. No vaccine-related serious adverse event was noted. Specific T-cell immune responses were observed in 211 (46% [95% CI 42–51]) of 455 vaccine recipients in the phase 2 trial, and in 48 (40% [31–49]) of 120 vaccine recipients compared with one (1% [0–5]) of 111 placebo recipients (p<0·0001) in the extension trial. Seroconversion for RBD-specific IgG was observed in 48 (10% [95% CI 8–13]) of 466 vaccine recipients in the phase 2 trial (geometric mean titre [GMT] 3·8 [95% CI 3·4–4·3] in responders), and in 31 (22% [15–29]) of 143 vaccine recipients (GMT 4·4 [3·3–5·8]) and zero (0% [0–2]) of 147 placebo recipients (p<0·0001) in the extension trial. 57 (12% [95% CI 9–16]) of 466 vaccine recipients had positive conversion for RBD-specific s-IgA (GMT 3·8 [95% CI 3·5–4·1] in responders) in the phase 2 trial, as did 18 (13% [8–19]) of 143 vaccine recipients (GMT 5·2 [4·0–6·8]) and zero (0% [0–2]) of 147 placebo recipients (p<0·0001) in the extension trial. INTERPRETATION: dNS1-RBD was well tolerated in adults. Weak T-cell immunity in peripheral blood, as well as weak humoral and mucosal immune responses against SARS-CoV-2, were detected in vaccine recipients. Further studies are warranted to verify the safety and efficacy of intranasal vaccines as a potential supplement to current intramuscular SARS-CoV-2 vaccine pools. Steps should be taken in future studies to reduce the potential for cross-contamination caused by the vaccine strain aerosol during administration. FUNDING: National Key Research and Development Program of China, National Science, Fujian Provincial Science, CAMS Innovation Fund for Medical Sciences, and Beijing Wantai Biological Pharmacy Enterprise.