Cargando…

A dynamic clamp protocol to artificially modify cell capacitance

Dynamics of excitable cells and networks depend on the membrane time constant, set by membrane resistance and capacitance. Whereas pharmacological and genetic manipulations of ionic conductances of excitable membranes are routine in electrophysiology, experimental control over capacitance remains a...

Descripción completa

Detalles Bibliográficos
Autores principales: Pfeiffer, Paul, Barreda Tomás, Federico José, Wu, Jiameng, Schleimer, Jan-Hendrik, Vida, Imre, Schreiber, Susanne
Formato: Online Artículo Texto
Lenguaje:English
Publicado: eLife Sciences Publications, Ltd 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9135398/
https://www.ncbi.nlm.nih.gov/pubmed/35362411
http://dx.doi.org/10.7554/eLife.75517
_version_ 1784713953444626432
author Pfeiffer, Paul
Barreda Tomás, Federico José
Wu, Jiameng
Schleimer, Jan-Hendrik
Vida, Imre
Schreiber, Susanne
author_facet Pfeiffer, Paul
Barreda Tomás, Federico José
Wu, Jiameng
Schleimer, Jan-Hendrik
Vida, Imre
Schreiber, Susanne
author_sort Pfeiffer, Paul
collection PubMed
description Dynamics of excitable cells and networks depend on the membrane time constant, set by membrane resistance and capacitance. Whereas pharmacological and genetic manipulations of ionic conductances of excitable membranes are routine in electrophysiology, experimental control over capacitance remains a challenge. Here, we present capacitance clamp, an approach that allows electrophysiologists to mimic a modified capacitance in biological neurons via an unconventional application of the dynamic clamp technique. We first demonstrate the feasibility to quantitatively modulate capacitance in a mathematical neuron model and then confirm the functionality of capacitance clamp in in vitro experiments in granule cells of rodent dentate gyrus with up to threefold virtual capacitance changes. Clamping of capacitance thus constitutes a novel technique to probe and decipher mechanisms of neuronal signaling in ways that were so far inaccessible to experimental electrophysiology.
format Online
Article
Text
id pubmed-9135398
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher eLife Sciences Publications, Ltd
record_format MEDLINE/PubMed
spelling pubmed-91353982022-05-27 A dynamic clamp protocol to artificially modify cell capacitance Pfeiffer, Paul Barreda Tomás, Federico José Wu, Jiameng Schleimer, Jan-Hendrik Vida, Imre Schreiber, Susanne eLife Neuroscience Dynamics of excitable cells and networks depend on the membrane time constant, set by membrane resistance and capacitance. Whereas pharmacological and genetic manipulations of ionic conductances of excitable membranes are routine in electrophysiology, experimental control over capacitance remains a challenge. Here, we present capacitance clamp, an approach that allows electrophysiologists to mimic a modified capacitance in biological neurons via an unconventional application of the dynamic clamp technique. We first demonstrate the feasibility to quantitatively modulate capacitance in a mathematical neuron model and then confirm the functionality of capacitance clamp in in vitro experiments in granule cells of rodent dentate gyrus with up to threefold virtual capacitance changes. Clamping of capacitance thus constitutes a novel technique to probe and decipher mechanisms of neuronal signaling in ways that were so far inaccessible to experimental electrophysiology. eLife Sciences Publications, Ltd 2022-04-01 /pmc/articles/PMC9135398/ /pubmed/35362411 http://dx.doi.org/10.7554/eLife.75517 Text en © 2022, Pfeiffer et al https://creativecommons.org/licenses/by/4.0/This article is distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use and redistribution provided that the original author and source are credited.
spellingShingle Neuroscience
Pfeiffer, Paul
Barreda Tomás, Federico José
Wu, Jiameng
Schleimer, Jan-Hendrik
Vida, Imre
Schreiber, Susanne
A dynamic clamp protocol to artificially modify cell capacitance
title A dynamic clamp protocol to artificially modify cell capacitance
title_full A dynamic clamp protocol to artificially modify cell capacitance
title_fullStr A dynamic clamp protocol to artificially modify cell capacitance
title_full_unstemmed A dynamic clamp protocol to artificially modify cell capacitance
title_short A dynamic clamp protocol to artificially modify cell capacitance
title_sort dynamic clamp protocol to artificially modify cell capacitance
topic Neuroscience
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9135398/
https://www.ncbi.nlm.nih.gov/pubmed/35362411
http://dx.doi.org/10.7554/eLife.75517
work_keys_str_mv AT pfeifferpaul adynamicclampprotocoltoartificiallymodifycellcapacitance
AT barredatomasfedericojose adynamicclampprotocoltoartificiallymodifycellcapacitance
AT wujiameng adynamicclampprotocoltoartificiallymodifycellcapacitance
AT schleimerjanhendrik adynamicclampprotocoltoartificiallymodifycellcapacitance
AT vidaimre adynamicclampprotocoltoartificiallymodifycellcapacitance
AT schreibersusanne adynamicclampprotocoltoartificiallymodifycellcapacitance
AT pfeifferpaul dynamicclampprotocoltoartificiallymodifycellcapacitance
AT barredatomasfedericojose dynamicclampprotocoltoartificiallymodifycellcapacitance
AT wujiameng dynamicclampprotocoltoartificiallymodifycellcapacitance
AT schleimerjanhendrik dynamicclampprotocoltoartificiallymodifycellcapacitance
AT vidaimre dynamicclampprotocoltoartificiallymodifycellcapacitance
AT schreibersusanne dynamicclampprotocoltoartificiallymodifycellcapacitance