Cargando…
Machine Learning-Based Integration Develops a Pyroptosis-Related lncRNA Model to Enhance the Predicted Value of Low-Grade Glioma Patients
BACKGROUND: Molecular features have been included in the categorization of gliomas because they may be excellent predictors of tumor prognosis. Lower-grade glioma (LGGs, which comprise grade 2 and grade 3 gliomas) patients have a wide variety of outcomes. The goal of this research is to investigate...
Autores principales: | Wu, Jie, Lu, Lichun, Wang, Chen, Jiang, Feng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9135526/ https://www.ncbi.nlm.nih.gov/pubmed/35646114 http://dx.doi.org/10.1155/2022/8164756 |
Ejemplares similares
-
Survival analysis of immune-related lncRNA in low-grade glioma
por: Li, Xiaozhi, et al.
Publicado: (2019) -
Foreboding lncRNA markers of low-grade gliomas dependent on metabolism
por: Lu, Zhuangzhuang, et al.
Publicado: (2022) -
A novel cuproptosis-related LncRNA signature: Prognostic and therapeutic value for low grade glioma
por: Wen, Jun, et al.
Publicado: (2023) -
A prognostic pyroptosis-related LncRNA classifier associated with the immune landscape and therapy efficacy in glioma
por: Zhong, Jiasheng, et al.
Publicado: (2022) -
Prognosis and immune response of a cuproptosis-related lncRNA signature in low grade glioma
por: Xu, Yifan, et al.
Publicado: (2022)