Cargando…
Iron atom–cluster interactions increase activity and improve durability in Fe–N–C fuel cells
Simultaneously increasing the activity and stability of the single-atom active sites of M–N–C catalysts is critical but remains a great challenge. Here, we report an Fe–N–C catalyst with nitrogen-coordinated iron clusters and closely surrounding Fe–N(4) active sites for oxygen reduction reaction in...
Autores principales: | Wan, Xin, Liu, Qingtao, Liu, Jieyuan, Liu, Shiyuan, Liu, Xiaofang, Zheng, Lirong, Shang, Jiaxiang, Yu, Ronghai, Shui, Jianglan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9135695/ https://www.ncbi.nlm.nih.gov/pubmed/35618792 http://dx.doi.org/10.1038/s41467-022-30702-z |
Ejemplares similares
-
Zigzag carbon as efficient and stable oxygen reduction electrocatalyst for proton exchange membrane fuel cells
por: Xue, Longfei, et al.
Publicado: (2018) -
Highly Accessible Atomically Dispersed Fe‐N(x) Sites Electrocatalyst for Proton‐Exchange Membrane Fuel Cell
por: Guo, Jianing, et al.
Publicado: (2021) -
N-doped carbon nanomaterials are durable catalysts for oxygen reduction reaction in acidic fuel cells
por: Shui, Jianglan, et al.
Publicado: (2015) -
Single-crystal ZrCo nanoparticle for advanced hydrogen and H-isotope storage
por: Li, Zhenyang, et al.
Publicado: (2023) -
Environmentally Tough and Stretchable MXene Organohydrogel with Exceptionally Enhanced Electromagnetic Interference Shielding Performances
por: Yu, Yuanhang, et al.
Publicado: (2022)