Cargando…

Plant phenotype relationship corpus for biomedical relationships between plants and phenotypes

Medicinal plants have demonstrated therapeutic potential for applicability for a wide range of observable characteristics in the human body, known as “phenotype,” and have been considered favorably in clinical treatment. With an ever increasing interest in plants, many researchers have attempted to...

Descripción completa

Detalles Bibliográficos
Autores principales: Cho, Hyejin, Kim, Baeksoo, Choi, Wonjun, Lee, Doheon, Lee, Hyunju
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9135735/
https://www.ncbi.nlm.nih.gov/pubmed/35618736
http://dx.doi.org/10.1038/s41597-022-01350-1
Descripción
Sumario:Medicinal plants have demonstrated therapeutic potential for applicability for a wide range of observable characteristics in the human body, known as “phenotype,” and have been considered favorably in clinical treatment. With an ever increasing interest in plants, many researchers have attempted to extract meaningful information by identifying relationships between plants and phenotypes from the existing literature. Although natural language processing (NLP) aims to extract useful information from unstructured textual data, there is no appropriate corpus available to train and evaluate the NLP model for plants and phenotypes. Therefore, in the present study, we have presented the plant-phenotype relationship (PPR) corpus, a high-quality resource that supports the development of various NLP fields; it includes information derived from 600 PubMed abstracts corresponding to 5,668 plant and 11,282 phenotype entities, and demonstrates a total of 9,709 relationships. We have also described benchmark results through named entity recognition and relation extraction systems to verify the quality of our data and to show the significant performance of NLP tasks in the PPR test set.