Cargando…
PepNN: a deep attention model for the identification of peptide binding sites
Protein-peptide interactions play a fundamental role in many cellular processes, but remain underexplored experimentally and difficult to model computationally. Here, we present PepNN-Struct and PepNN-Seq, structure and sequence-based approaches for the prediction of peptide binding sites on a prote...
Autores principales: | Abdin, Osama, Nim, Satra, Wen, Han, Kim, Philip M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9135736/ https://www.ncbi.nlm.nih.gov/pubmed/35618814 http://dx.doi.org/10.1038/s42003-022-03445-2 |
Ejemplares similares
-
PEP-SiteFinder: a tool for the blind identification of peptide
binding sites on protein surfaces
por: Saladin, Adrien, et al.
Publicado: (2014) -
PepSite: prediction of peptide-binding sites from protein surfaces
por: Trabuco, Leonardo G., et al.
Publicado: (2012) -
DeepPep: Deep proteome inference from peptide profiles
por: Kim, Minseung, et al.
Publicado: (2017) -
CNN-PepPred: an open-source tool to create convolutional NN models for the discovery of patterns in peptide sets—application to peptide–MHC class II binding prediction
por: Junet, Valentin, et al.
Publicado: (2021) -
Deep-AmPEP30: Improve Short Antimicrobial Peptides Prediction with Deep Learning
por: Yan, Jielu, et al.
Publicado: (2020)