Cargando…
Small Noncoding RNAome Changes During Human Bone Marrow Mesenchymal Stem Cells Senescence In Vitro
Bone marrow mesenchymal stem cells (BMSCs) have been used in stem cell-based therapy for various diseases due to their self-renewing ability and differentiation potential to various types of cells and immunoprivileged properties. However, the proliferation capability and functionality of BMSCs are k...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9135970/ https://www.ncbi.nlm.nih.gov/pubmed/35634512 http://dx.doi.org/10.3389/fendo.2022.808223 |
_version_ | 1784714071399989248 |
---|---|
author | Xiao, Fei Peng, Jianping Li, Yang Zhou, Xing Ma, Ding Dai, Liming Yuan, Jie Chen, Xiaodong Wang, Chuandong |
author_facet | Xiao, Fei Peng, Jianping Li, Yang Zhou, Xing Ma, Ding Dai, Liming Yuan, Jie Chen, Xiaodong Wang, Chuandong |
author_sort | Xiao, Fei |
collection | PubMed |
description | Bone marrow mesenchymal stem cells (BMSCs) have been used in stem cell-based therapy for various diseases due to their self-renewing ability and differentiation potential to various types of cells and immunoprivileged properties. However, the proliferation capability and functionality of BMSCs are known to decline with aging, which severely limits the extensive applications of BMSC-based therapies. To date, the exact mechanism involved in the cellular senescence of BMSCs remains unclear. RNA is thought to be the initial molecular form of life on earth. It also acts as a transmitter and important regulator of genetic information expression. There are many kinds of small noncoding RNAs with different functions in cells that regulate important life activity processes in multiple dimensions, including development process, gene expression, genomic stability, and cellular senescence. In this study, a replicative senescence model of hBMSCs was established and the expression changes of small noncoding RNAs during senescence were detected by small RNA high-throughput sequencing analysis and qPCR. Small RNA sequencing results showed that there were significant differences in the expression of 203 miRNAs, 46 piRNAs, 63 snoRNAs, 12 snRNAs, and 7 rasiRNAs. The results of qPCR, which was performed for the verification of the sequencing results, showed that there were significant differences in the expression of 24 miRNAs, 34 piRNAs, 34 snoRNAs, and 2 snRNAs. These findings might provide a novel insight into hBMSC senescence and contribute to the development of new targeting senescence strategies. |
format | Online Article Text |
id | pubmed-9135970 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-91359702022-05-28 Small Noncoding RNAome Changes During Human Bone Marrow Mesenchymal Stem Cells Senescence In Vitro Xiao, Fei Peng, Jianping Li, Yang Zhou, Xing Ma, Ding Dai, Liming Yuan, Jie Chen, Xiaodong Wang, Chuandong Front Endocrinol (Lausanne) Endocrinology Bone marrow mesenchymal stem cells (BMSCs) have been used in stem cell-based therapy for various diseases due to their self-renewing ability and differentiation potential to various types of cells and immunoprivileged properties. However, the proliferation capability and functionality of BMSCs are known to decline with aging, which severely limits the extensive applications of BMSC-based therapies. To date, the exact mechanism involved in the cellular senescence of BMSCs remains unclear. RNA is thought to be the initial molecular form of life on earth. It also acts as a transmitter and important regulator of genetic information expression. There are many kinds of small noncoding RNAs with different functions in cells that regulate important life activity processes in multiple dimensions, including development process, gene expression, genomic stability, and cellular senescence. In this study, a replicative senescence model of hBMSCs was established and the expression changes of small noncoding RNAs during senescence were detected by small RNA high-throughput sequencing analysis and qPCR. Small RNA sequencing results showed that there were significant differences in the expression of 203 miRNAs, 46 piRNAs, 63 snoRNAs, 12 snRNAs, and 7 rasiRNAs. The results of qPCR, which was performed for the verification of the sequencing results, showed that there were significant differences in the expression of 24 miRNAs, 34 piRNAs, 34 snoRNAs, and 2 snRNAs. These findings might provide a novel insight into hBMSC senescence and contribute to the development of new targeting senescence strategies. Frontiers Media S.A. 2022-05-13 /pmc/articles/PMC9135970/ /pubmed/35634512 http://dx.doi.org/10.3389/fendo.2022.808223 Text en Copyright © 2022 Xiao, Peng, Li, Zhou, Ma, Dai, Yuan, Chen and Wang https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Endocrinology Xiao, Fei Peng, Jianping Li, Yang Zhou, Xing Ma, Ding Dai, Liming Yuan, Jie Chen, Xiaodong Wang, Chuandong Small Noncoding RNAome Changes During Human Bone Marrow Mesenchymal Stem Cells Senescence In Vitro |
title | Small Noncoding RNAome Changes During Human Bone Marrow Mesenchymal Stem Cells Senescence In Vitro
|
title_full | Small Noncoding RNAome Changes During Human Bone Marrow Mesenchymal Stem Cells Senescence In Vitro
|
title_fullStr | Small Noncoding RNAome Changes During Human Bone Marrow Mesenchymal Stem Cells Senescence In Vitro
|
title_full_unstemmed | Small Noncoding RNAome Changes During Human Bone Marrow Mesenchymal Stem Cells Senescence In Vitro
|
title_short | Small Noncoding RNAome Changes During Human Bone Marrow Mesenchymal Stem Cells Senescence In Vitro
|
title_sort | small noncoding rnaome changes during human bone marrow mesenchymal stem cells senescence in vitro |
topic | Endocrinology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9135970/ https://www.ncbi.nlm.nih.gov/pubmed/35634512 http://dx.doi.org/10.3389/fendo.2022.808223 |
work_keys_str_mv | AT xiaofei smallnoncodingrnaomechangesduringhumanbonemarrowmesenchymalstemcellssenescenceinvitro AT pengjianping smallnoncodingrnaomechangesduringhumanbonemarrowmesenchymalstemcellssenescenceinvitro AT liyang smallnoncodingrnaomechangesduringhumanbonemarrowmesenchymalstemcellssenescenceinvitro AT zhouxing smallnoncodingrnaomechangesduringhumanbonemarrowmesenchymalstemcellssenescenceinvitro AT mading smallnoncodingrnaomechangesduringhumanbonemarrowmesenchymalstemcellssenescenceinvitro AT dailiming smallnoncodingrnaomechangesduringhumanbonemarrowmesenchymalstemcellssenescenceinvitro AT yuanjie smallnoncodingrnaomechangesduringhumanbonemarrowmesenchymalstemcellssenescenceinvitro AT chenxiaodong smallnoncodingrnaomechangesduringhumanbonemarrowmesenchymalstemcellssenescenceinvitro AT wangchuandong smallnoncodingrnaomechangesduringhumanbonemarrowmesenchymalstemcellssenescenceinvitro |